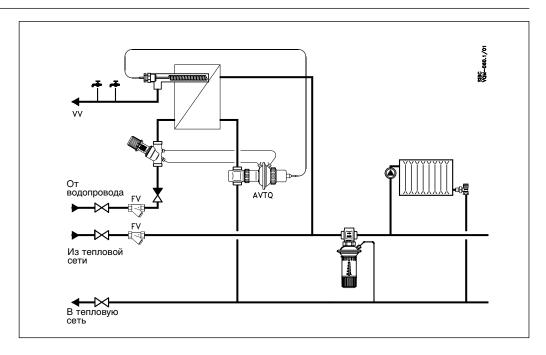
# Автоматический регулятор температуры с коррекцией по расходу AVTQ



#### Область применения



AVTQ - регулятор температуры прямого действия с устройством для коррекции его работы в зависимости от расхода нагреваемой воды. Регулятор AVTQ предназначен для установки на скоростных водоподогревателях


(как правило, пластинчатых) в системах горячего водоснабжения зданий (ГВС).

AVTQ предотвращает повышение внутри водоподогревателя температуры нагреваемой воды в случае резкого сокращения водоразбора в системе ГВС.

Основные характеристики:

- закрывает клапан при нагреве температурного датчика;
- закрывает или открывает клапан при резком изменении водоразбора в системе ГВС;
- клапан регулятора устанавливается на обратном трубопроводе греющего теплоносителя;
- температурный датчик может быть установлен в любом положении;
- широкий диапазон температурных настроек;
- поддерживает при отсутствии водоразбора постоянную темпрературу в водоподогревателе (приблизительно на уровне 35 °C);
- клапан рассчитан на рабочее давление теплоносителя в 16 бар.

Принципиальная схема системы ГВС с использованием регулятора AVTQ



AVTQ состоит из регулирующего клапана и установленного на нем термостатического элемента. Клапан терморегулятора монтируется на обратном трубопроводе сетевого (греющего) теплоносителя. Термостатический элемент

связан импульсными трубками с регулятором расхода, который устанавливается на трубопроводе нагреваемой (водопроводной) воды системы ГВС.

55



## Регулятор температуры AVTQ

### Принцип

Когда водоразборные краны в системе ГВС открываются, возникает перепад давления на регуляторе расхода. Этот перепад передается на диафрагму AVTQ. При этом происходит как бы мгновенная перенастройка термостатического элемента, то есть к усилию рабочей пружины прибавляется величина перепада давления. Клапан AVTQ приоткрывается, расход греющего теплоносителя увеличивается

и температура нагреваемой воды быстро возрастает до требуемой рабочей температуры, значение которой зависит от настройки регулятора расхода.

При превышении заданного значения температуры нагреваемой воды давление рабочего вещества в сильфоне термоэлемента преодолевает сопротивление рабочей пружины и диафрагмы и клапан прикрывается.

Когда водоразборные краны в системе ГВС закрываются, перепад давления на регуляторе расхода исчезает и клапан AVTQ возвращается в исходное положение, при котором поддерживается температура в водоподогревателе на минимальном уровне (около 35 °C).

#### Номенклатура и коды для оформления заказа

| Тип     | DN, | Размер присоединитель | ьной резьбы по ISO 228/1 | k <sub>v</sub> ,  | Код №    |
|---------|-----|-----------------------|--------------------------|-------------------|----------|
| INII    | MM  | Клапана AVTQ          | Регулятора расхода       | м <sup>3</sup> /ч | код ие   |
| AVTQ 20 | 20  | G 1 A                 | G 1 A                    | 3,2               | 003L7020 |

В комплект входит сальник термодатчика и фитинги для импульсных трубок  $\varnothing$  6 мм

Комплект присоединительных патрубков (2 патрубка, 2 накидные гайки, 2 прокладки)

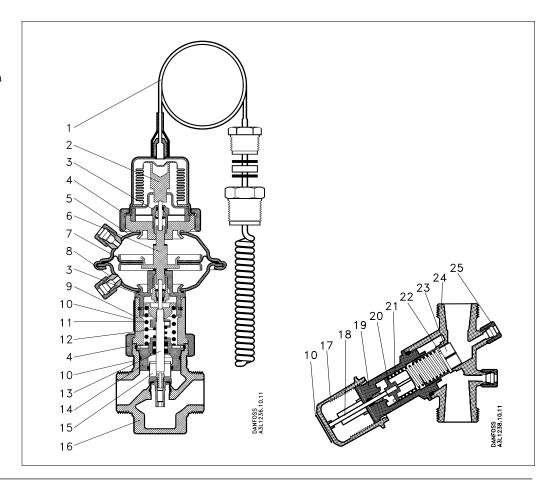
| <b>DN</b> , | Резьбовые патрубки | Патрубки под приварку |
|-------------|--------------------|-----------------------|
| MM          | <b>Код №</b>       | <b>Код №</b>          |
| 20          | 003H6903           | 003H6909              |

#### Запасные части

| Наименование                                                                | Код №    |
|-----------------------------------------------------------------------------|----------|
| Уплотнительные фитинги для 6 мм медной трубки (4 обжимных кольца и 4 гайки) | 003L7101 |
| Прокладка под корпус диафрагмы                                              | 003L3154 |
| Прокладка сальника термодатчика                                             | 003L7120 |
| Регулирующий клапан                                                         | 003L7108 |
| Диафрагменный элемент                                                       | 003L7111 |
| Термостатический элемент с сальником термодатчика                           | 003L7100 |
| Корпус регулятора расхода                                                   | 003L7107 |

# **Технические** характеристики

| Рабочее давление P <sub>P</sub> , бар:                  |                            |
|---------------------------------------------------------|----------------------------|
| - для клапана AVTQ                                      | 16                         |
| - для диафрагмы и регулятора расхода                    | 10                         |
| Испытательное давление Р <sub>и</sub> , бар:            |                            |
| - для клапана AVTQ                                      | 25                         |
| - для диафрагмы и регулятора расхода                    | 16                         |
| Макс. температура, °С:                                  |                            |
| - теплоносителя, проходящего через клапан AVTQ          | 100                        |
| - нагреваемой воды                                      | 90 1)                      |
| Макс. температура нагрева датчика, °С                   | 130                        |
| Макс. скорость воды в месте установки термодатчика, м/с | 1,5                        |
| Макс. перепад давления, бар                             | 4                          |
| Длина капиллярной трубки термодатчика, м                | 1                          |
| Относительный диапазон регулирования                    | 100:1                      |
| Коэффициент кавитации, Z                                | ≤ 0,6                      |
| Среда:                                                  |                            |
| - теплоноситель - вода                                  | 7 <ph<10< td=""></ph<10<>  |
| - водопроводная вода по содержанию хлоринов             | до 200 ррт                 |
| - водопроводная вода по жесткости при pH<7              | $\frac{HCO_3 -}{SO_4} > 1$ |


<sup>1)</sup> Рекомендуемый температурный диапазон 5 - 60 °C



# **Техническое описание.** Регулятор температуры AVTQ

# **Устройство**

- 1. Термодатчик с сальником
- 2. Нажимной шток сильфона
- 3. Сальник
- 4. Гайка
- 5. Кожух диафрагменного элемента
- 6. Шток диафрагмы
- 7. Диафрагма
- 8. Фитинг для импульсной трубки
- 9. Промежуточное кольцо
- 10. Идентификационная табличка
- 11. Рабочая пружина
- 12. Пружина диафрагмы
- 13. Шпиндель клапана
- 14. Вставка клапана
- 15. Разгрузочный цилиндр
- 16. Корпус клапана
- 17. Настроечная рукоятка
- 18. Шпиндель
- 19. Вставка клапана
- 20. Нажимная втулка
- 21. Настроечная пружина
- 22. Уравнитель давления
- 23. Конус клапана
- 24. Корпус клапана
- 25. Штуцеры для импульсных трубок



# Материалы элементов, контактирующих с водой

#### Регулятор температуры - корпус клапана ......RG, DIN 1705 W. № 2.1096.01

DIN 17440 W. № 1.4404 - разгрузочный цилиндрхромо-никел. сталь, DIN 17440 W. № 1.4435

- кольцевое уплотнение ......ЕРDМ - диафрагма .....ЕРDМ

-кожух диафрагменного

элемента.....хромо-никел. сталь, DIN 17440 W. № 1.4435

- диафрагменный диск .....хромо-никел. сталь, DIN 17440 W. № 1.4436

-шток диафрагмы .....необесцинковывающаяся латунь, BS 2874

# Термодатчик

- термобаллон .....медь - сальник капиллярной трубки ......необесцинковывающаяся латунь, BS 2874

- набивка сальника ......ЕРDM

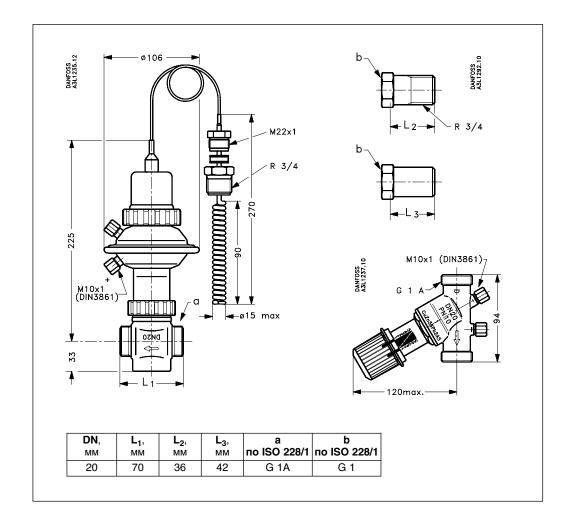
# Регулятор расхода

- корпус клапана .....необесцинковывающаяся латунь, BS 2872

вывающанся латунь, во 2672 - вставка клапана .....необесцинко-

вывающаяся латунь, BS 2874 - шпиндель клапана .....хромо-никел.

сталь, DIN 17440 W. № 1.4401 - настроечная пружина.....хромо-никел. сталь, DIN 17440 W. № 1.4468


-кольцевое уплотнение .....ЕРDМ

- нажимная втулка ......РРS-пластик



# Регулятор температуры AVTQ

Габаритные и присоединительные размеры





# Техническое описание. Регулятор температуры AVTQ

## Настройка

Регулятор температуры AVTQ может быть использован с пластинчатыми водоподогревателями мощностью до 150 Квт. Поддержание регулятором требуемой температуры горячей воды осуществляется при ее расходе равном 75% от максимального значения. В результате применения принципа коррекции температуры горячей воды по ее расходу размеры клапана AVTQ не имеют принципиального значения. Температура горячей воды будет

Настройки регулятора при предельных параметрах:

поддерживаться регулятором на требуемом уровне при ее расходе равном примерно 75% от максимальной величины. При больших или меньших расходах температура воды несколько меняется. Так, например, если регулятор настроен на 50 °C при расходе горячей воды 600 кг/ч, то при изменении расхода от 300 до 900 кг/ч температура воды будет варьироваться в пределах 4 °C.

#### При минимальных параметрах

| Наименование величин                                       | Значение величин | Настройка регулятора<br>расхода |
|------------------------------------------------------------|------------------|---------------------------------|
| Температура греющего теплоносителя Т <sub>С1</sub> , °С    | 65               |                                 |
| Перепад давления на клапане AVTQ $\Delta P_V$ , бар        | 0,2              |                                 |
| Температура горячей воды в системе ГВС Т <sub>Г</sub> , °С | 50               | 4                               |
| Температура водопроводной воды T <sub>X</sub> , °C         | 10               |                                 |
| Расход горячей воды в системе ГВС G <sub>г</sub> , кг/ч    | 800              |                                 |

#### При максимальных параметрах

| Наименование величин                                       | Значение величин | Настройка регулятора<br>расхода |
|------------------------------------------------------------|------------------|---------------------------------|
| Температура греющего теплоносителя Т <sub>С1</sub> , °С    | 100              |                                 |
| Перепад давления на клапане AVTQ $\Delta P_V$ , бар        | 4                |                                 |
| Температура горячей воды в системе ГВС Т <sub>Г</sub> , °С | 50               | 2,5                             |
| Температура водопроводной воды T <sub>X</sub> , °C         | 10               |                                 |
| Расход горячей воды в системе ГВС $G_{\Gamma}$ , кг/ч      | 800              |                                 |

# Настройки при промежуточных параметрах (кроме $T_{\Gamma}$ = 50 °C и $G_{\Gamma}$ = 800 кг/ч)

| Температура греющего теплоносителя Т <sub>С1</sub> , | Настройки на регуляторе расхода при перепаде давления на клапане регулятора AVTQ |     |     |     |
|------------------------------------------------------|----------------------------------------------------------------------------------|-----|-----|-----|
| °C                                                   | 0,2                                                                              | 0,5 | 1,0 | 3,0 |
| 65                                                   | 4                                                                                | 3   | 3   | 3   |
| 80                                                   | 3,5                                                                              | 3,5 | 3   | 3   |
| 100                                                  | 3                                                                                | 3   | 3   | 2,5 |

Таким образом, настраивать регулятор температуры рекомендуется при расходе горячей воды равном примерно 75% от максимального значения. В этом случае будет обеспечено оптимальное регулирование.

Настраивается AVTQ выставлением регулятора расхода на индекс, соответствующий требуемой температуре при конкретных параметрах системы. Индекс настройки может быть определен по номограммам в последовательности, показанной на нижеприведенном примере.

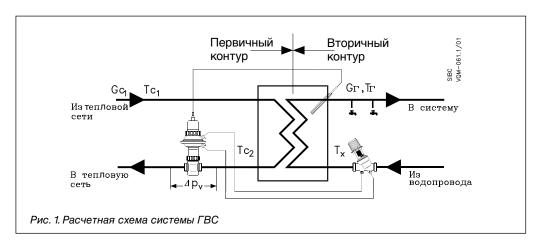
VKDCO119 Данфосс ТОВ 03/2010 59

### Регулятор температуры AVTQ

#### Внимание!

Исходные данные «Примера расчета» выбраны авторами произвольно и не могут быть использованы в качестве исходных данных для реальных расчетов!

# Пример


Определить индекс настройки регулятора расхода для поддержания требуемой температуры горячей воды в системе ГВС (см. рис. 1) при следующих параметрах:

- расчетный расход горячей воды  $G_{\Gamma} = 800 \ \kappa r/ч;$
- максимальный расход горячей воды  $G_{\Gamma}^{\text{макс.}} = 900 \ \text{кг/ч};$
- температура горячей воды  $T_{\Gamma}$  = 50 °C;
- температура холодной (нагреваемой) воды  $T_X = 10 \, ^{\circ}\text{C};$
- температура греющего (сетевого) теплоносителя  $T_{C1} = 65$  °C;
- расчетный перепад давления на клапане регулятора AVTQ ∆P<sub>кл.</sub> = 0,2 бар.

#### Решение:

Максимальная тепловая мощность водоподогревателя:

 $Q = 1,16 \times G_{\Gamma}^{MAKC}(T_{\Gamma} - T_{x}) = 1,16 \times 900 \times (50 - 10) = 42 \text{ kBt}$ 

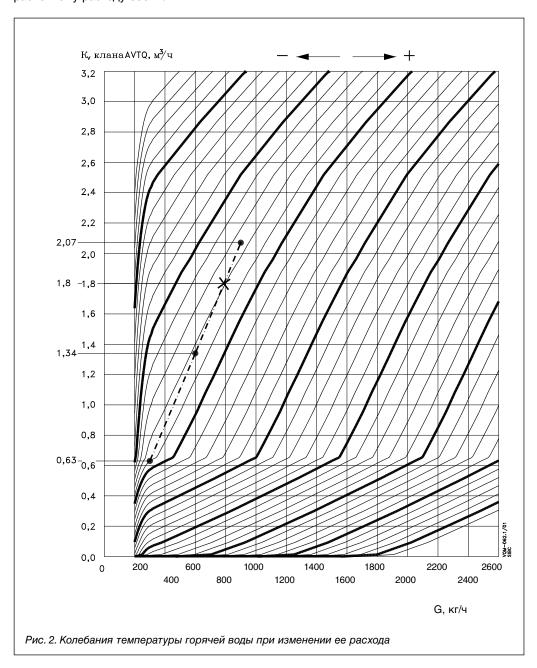


Подбирается водоподогреватель с определением расхода греющего теплоносителя и перепада температур до и после подогревателя.

По расходу греющего теплоносителя и перепаду давления на клапане AVTQ рассчитывается его пропускная способность:

Для подобранного водоподогревателя при других расходах горячей воды определяются эти же параметры (см. таблицу).

| Тепловая нагрузка<br>наводоподогрева-<br>тель Q,<br>кВт | Расход<br>нагреваемой воды<br>G <sub>Г</sub> ,<br>кг/ч | Расход греющего теплоносителя G <sub>C</sub> , кг/ч | Перепад температур греющего теплоносителя $\Delta T_C$ , $^{\circ}C$ | Пропускная способность клапана AVTQ $k_v$ , $m^{3/4}$ |
|---------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|
| 14                                                      | 300                                                    | 280                                                 | 43                                                                   | 0,63                                                  |
| 28                                                      | 600                                                    | 600                                                 | 40                                                                   | 1,34                                                  |
| 42                                                      | 900                                                    | 925                                                 | 39                                                                   | 2,07                                                  |




На номограмме (рис. 2) по нанесенным на нее точкам, соответствующим пересечениям  $k_v$  и  $G_\Gamma$ , можно увидеть, что, если при расходе горячей воды 800 кг/ч ее температура будет поддерживаться на уровне 50 °C, то при расходе 300 кг/ч температура воды возрастет до 52 °C, а при расходе 900 кг/ч - снижается до 49 °C. (При перемещении по номограмме точки пересечения  $k_v$  и  $G_\Gamma$  вправо на один интервал между линиями температура горячей воды возрастает на 2 °C, а при перемещении влево - уменьшается на 2 °C).

Нанесенные на номограмму точки соединяются прямой, с помощью которой находится  $k_v$ =1,8 м³/ч, соответствующее расчетному расходу 800 кг/ч.

По  $k_v$ =1,8 м³/ч и  $T_\Gamma$  = 50 °C на номограмме (рис. 3) находится индекс настройки регулятора расхода, который обеспечит поддержание требуемой температуры горячей воды.

Используя индекс настройки клапана по номограмме (рис. 4) можно найти потерю давления в нем при расчетном расходе горячей воды ( $\Delta P_{\rm KЛ}$ =0,34 бар).



VKDCO119

# Регулятор температуры AVTQ

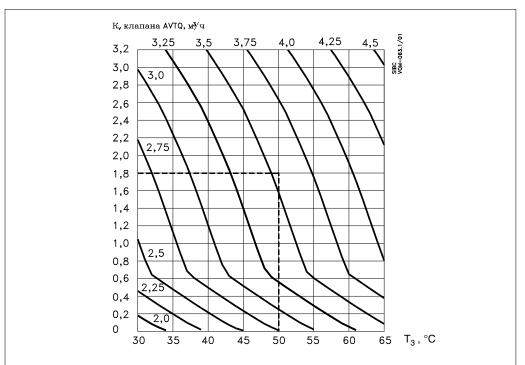



Рис. 3. Настройки регулятора расхода в зависимости от температуры нагреваемой воды  $T_\Gamma$  и пропускной способности клапана AVTQ  $K_\nu$  при расходе нагреваемой воды 800 кг/ч

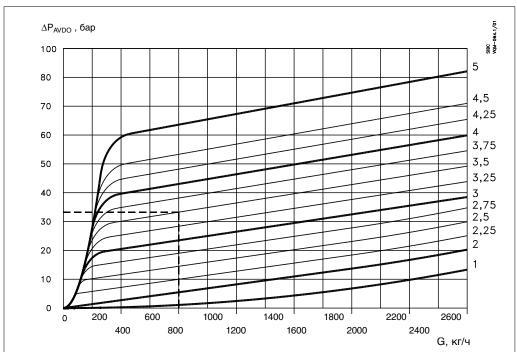
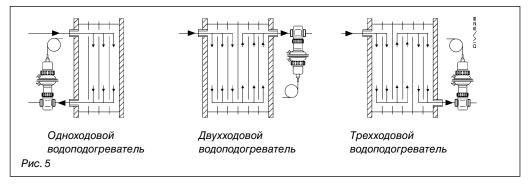
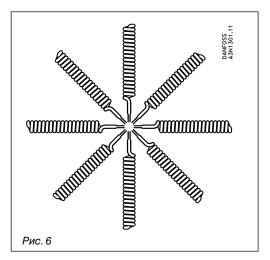



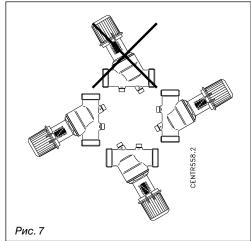

Рис. 4. Потери давления в регуляторе расхода в зависимости от его настройки и расхода нагреваемой воды  $\mathsf{G}_\Gamma$ 

# **Техническое описание.** Регулятор температуры AVTQ

#### **Установка**




Регулятор AVTQ может быть использован с большинством типов пластинчатых водоподогревателей.


Система регулирования функционирует лучше, если температурный датчик установлен непосредственно внутри коллектора подогревателя (см. рис. 1). При этом датчик должен быть заведен в подогреватель как можно глубже, но в то же время так, чтобы он не упирался в разделяющую пластину (для многоходовых водоподогревателей) или опорную плиту, то есть не доходил до них примерно на 5 мм. В противном случае датчик будет измерять не среднюю температуру воды, а температуру пластин.

Чтобы быть гарантированным от возможного взаимного влияния материалов водоподогревателя и регулятора температуры рекомендуется в сомнительных случаях обращаться на завод-изготовитель подогревателей. Терморегулятор AVTQ должен быть размещен на обратном трубопроводе греющего теплоносителя вблизи от водоподогревателя.

Термостатический элемент AVTQ может быть установлен в любом положении, а диафрагменная секция повернута в позицию вокруг своей оси относительно корпуса клапана так, чтобы было удобно проложить импульсные трубки к регулятору расхода.

Положение температурного датчика может быть любым (см. рис. 6). Регулятор расхода не следует размещать ниппелями вниз, чтобы уменьшить риск засорения импульсных трубок (см. рис. 7). До монтажа AVTQ и присоединения импульсных трубок водоподогреватель и трубопроводы необходимо промыть. При заполнении системы водой следует выпустить воздух из импульсных трубок и диафрагменного элемента регулятора. ослабив присоединительные ниппели. Рекомендуется на трубопроводе холодной воды до клапана и на трубопроводе греющего теплоносителя предусмотреть сетчатые фильтры с размером ячейки сетки не более 0,6 мм.





63

VKDCO119 Данфосс ТОВ 03/2010

