
Седельные регулирующие клапаны серии VFG и VFU

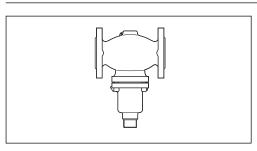
VFG 2 **VFG 21** (2-ходовые)

Основные характеристики:

приводами:

Комбинации с -

- DN 15-250; t_{макс.} 200 °C; проходной;


нормально открытый; разгруженные по давлению;

с металл. уплотнением затвора (VFG 2); с упругим уплотнением затвора (VFG 21).

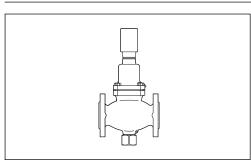
Термоэлементы AFT.. Электроприводы AMV(E) 4..

Электроприводы AMV(E) 6..

VFGS 2 (2-ходовой) для водяного пара

Основные характеристики:

- DN 15-250; - t_{макс.} 350 °С; проходной;


нормально открытый;

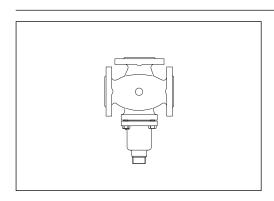
разгруженный по давлению;

с металл. уплотнением затвора;

регулируемая среда водяной пар.

VFU₂ (2-ходовой) нормально закрытый

Основные характеристики:


- DN 15-125; $t_{\text{Makc.}}$ 200 °C; проходной;

нормально закрытый; разгруженные по давлению;

с металл. уплотнением затвора.

VFG 33 (3-ходовой) смесительный

VFG 34 (3-ходовой) разделительный

Применяется только с термоэлементами AFT

Основные характеристики:

- DN 15-125; $t_{\text{макс.}}$ 350 °C; трехходовые;

смесительный VFG 33; разделительный VFG 34;

разгруженные по давлению

с металлическим уплотнением затвора

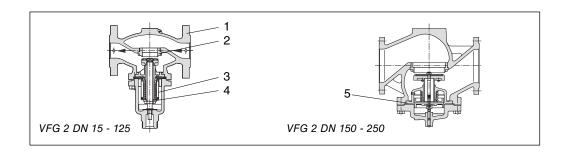
Седельные регулирующие клапаны серии VFG и VFU

Номенклатура и коды для оформления заказа

Нормально открытый Разгруженный по давлению Уплотнение затвора металлическое

DN,	k _{vs} ,	t _{makc.} ,		Код №						
ММ	м ³ /ч	° C	PN 16	PN 25	PN 40					
15	4.0	200	065B2388	065B2401	065B2411					
20	6.3	200	065B2389	065B2402	065B2412					
25	8.0	200	065B2390	065B2403	065B2413					
32	16	200	065B2391	065B2404	065B2414					
40	20	200	065B2392	065B2405	065B2415					
50	32	200	065B2393	065B2406	065B2416					
65	50	200	065B2394	065B2407	065B2417					
80	80	200	065B2395	065B2408	065B2418					
100	125	200	065B2396	065B2409	065B2419					
125	160	200	065B2397	065B2410	065B2420					
150	280	140	065B2398	-	065B2421					
200	320	140	065B2399	-	065B2422					
250	400	140	065B2400	-	065B2423					
150	280	200	065B2424	-	065B2427					
200	320	200	065B2425	-	065B2428					
250	400	200	065B2426	-	065B2429					

Примечание. Соотношение рабочего давления и температуры приведено в DIN 2401


Технические характеристики VFG 2

Номина	альный диаметр DN, мм		15	20	25	32	40	50	65	80	100	125	150	200	250
	жная способность k _{vs} , м ³ /ч		4	6.3	8	16	20	32	50	80	125	160	280 320*	320 450*	400 630*
Коэф. н	начала кавитации z по VDN	1A 24 422	0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35	0,3	0,2	0,2
	Макс. перепад давл. на клапане с АFT		16	16	16	16	16	16	16	16	15	15			
	$\Delta p_{\text{Makc}}^{**}$, бар	PN 25, 40	20	20	20	20	20	20	20	20	15	15			
	Макс. перепад давл. на клапане с AMV(E) 4	PN 16	16	16	16	16	16	16	16	16					
	$\Delta p_{\text{Makc}}^{**}$, δap	PN 25, 40	20	20	20	20	20	20	20	20					
	Макс. перепад давл. на клапане с AMV(E) 6.	PN 16	16	16	16	16	16	16	16	16	15	15	12	10	10
	$\Delta p_{\text{Makc}}^{**}$, δap	PN 25, 40	20	20	20	20	20	20	20	20	15	15	12	10	10
Номина	альное давление PN, бар	•	16, 25	16, 25 или 40, фланцы по DIN 2501											
Регули	руемая среда/Температура		Подго	товле	нная в	ода ил	и 30%	водны	й раст	вор гли	иколя,	T = 2-2	00 °C		
Устрой	ство разгрузки давления		Силь	фон из	нерж.	стали	, мат. N	<u>□</u> 1.457	'1				Гофр.	мембр	ана
		PN 16	Серы	ій чугун	EN-G	JL-250	(GG-2	5)							
Матери	иал корпуса клапана	PN 25	Ковкі	ий чугу	н ЕN-С	GJS-40	0 (GGC	à-40.3)							
		Сталі	ь GP24	0GH (0	GS-C 2	5)									
Матери	Материал затвора			Нерж. сталь, мат. № 1.4404									мат. № 1.4021		
Матери	иал седла		Нерж. сталь, мат. № 1.4021 мат. № 1.4313									3			

повышенное значение k_{VS} для клапанов, предназначенных для работы с приводами AMV 613-Y60 (082G0617). выше 14 бар необходимо использовать удлинитель штока ZF4, ZF6 или соединительную деталь KF2.

Устройство VFG 2

- 1. Корпус клапана
- Седло клапана 2.
- 3. Сильфон
- 4. Вкладыш клапана
- Диафрагма

117

Техническое описание Седельные регулирующие клапаны серии VFG и VFU

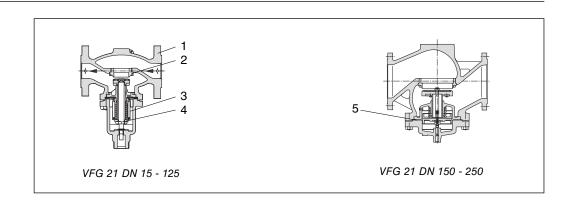
Номенклатура и коды для оформления заказа

VFG 21

Нормально открытый Разгруженный по давлению .. Уплотнение затвора упругое

Примечание.
Соотношение рабочего давления
и температуры приведено в
DIN 2401

	DN,	k _{vs} ,	t _{makc.} ,	Код	ı Nº
	ММ	м ³ /ч	°C	PN 16	PN 25
	15	4,0	150	065B2502	065B2515
	20	6,3	150	065B2503	065B2516
	25	8,0	150	065B2504	065B2517
	32	16	150	065B2505	065B2518
	40	20	150	065B2506	065B2519
\ \	50	32	150	065B2507	065B2520
	65	50	150	065B2508	065B2521
	80	80	150	065B2509	065B2522
	100	125	150	065B2510	065B2523
	125	160	150	065B2511	065B2524
	150	280	140	065B2512	-
	200	320	140	065B2513	-
	250	400	140	065B2514	-


Технические характеристики VFG 21

pu	opnorman vi a zi															
Номина	льный диаметр DN, мм		15	20	25	32	40	50	65	80	100	125	150	200	250	
Пропус	кная способность k _{vs} , м ³ /ч		4	6.3	8	16	20	32	50	80	125	160	280 320*	320 450*	400 630*	
Коэф. н	эф. начала кавитации z по VDMA 24 422		0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35	0,3	0,2	0,2	
	Макс. перепад давл. на клапане с AFT	PN 16	16	16	16	16	16	16	16	16	15	15				
	$\Delta p_{\text{Makc}}^{**}$, δap	PN 25	20	20	20	20	20	20	20	20	15	15				
	Макс. перепад давл. на клапане с AMV(E) 4	PN 16	16	16	16	16	16	16	16	16						
	$\Delta p_{\text{Makc}}^{**}$, δap	PN 25	20	20	20	20	20	20	20	20						
	Макс. перепад давл. на клапане с AMV(E) 6	PN 16	16	16	16	16	16	16	16	16	15	15	12	10	10	
	Δp **, бар	PN 25	20	20	20	20	20	20	20	20	15	15	12	10	10	
Номина	льное давление PN, бар	1	16, 25	5 или 4	0, фла	нцы по	DIN 2	501								
Регулир	руемая среда/Температура			Подготовленная вода или 30% водный раствор гликоля, T = 2-150 °C (DN = 15-12 2-140 °C (DN = 150-250)									5-125),			
Устрой	ство разгрузки давления		Силь	фон из	нерж.	стали	, мат. N	<u>l</u> º 1.457	'1				Гофр.	мембр	ана	
Мотори	IOE KODENOO KEOEGIIO	PN 16	Серы	й чугуі	- EN-G	JL-250	(GG-2	5)								
матери	ал корпуса клапана	PN 25	Ковкі	ий чугу	н ЕN-С	GJS-40	0 (GGC	3-40.3)								
Материал затвора				Нерж. сталь, мат. № 1.4404										мат. № 1.4021		
Матери	Материал седла			Нерж. сталь, мат. № 1.4021 мат. № 1.4313										3		
Кониче	Коническое уплотнение				EPDM											
* 500.00	TORALISATION OF SUSTICIONE & LO TITLE VISTALIAN TRANSPORTED TO THE TORALISATION OF THE															

повышенное значение k_{VS} для клапанов, предназначенных для работы с приводами AMV 613-Y60 (082G0617). выше 14 бар необходимо использовать удлинитель штока ZF4, ZF6 или соединительную деталь KF2.

Устройство VFG 21

- Корпус клапана Седло клапана 2.
- 3. Сильфон
- 4. Вкладыш клапана
- Диафрагма

Седельные регулирующие клапаны серии VFG и VFU

Номенклатура и коды для оформления заказа

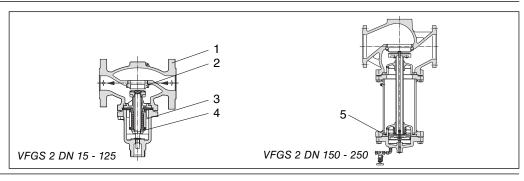
VFGS 2 (для пара) Нормально открытый Разгруженный по давлению Уплотнение затвора металлическое

⁽см. «Принадлежности») ²⁾ максимальная температура среды для клапанов VFGS 2 (см. таблицу ниже)

	DN,	k _{vs} ,	k _{vs} ¹),	t _{макс.} 2),		Код №	
	мм	м ³ /ч	м ³ /ч	° C	PN 16	PN 25	PN 40
	15	4.0	2.5	350*	065B2430	065B2443	065B2453
	20	6.3	4.0	350*	065B2431	065B2444	065B2454
	25	8.0	6.3	350*	065B2432	065B2445	065B2455
	32	16	10	350*	065B2433	065B2446	065B2456
	40	20	16	350*	065B2434	065B2447	065B2457
	50	32	25	350*	065B2435	065B2448	065B2458
F	65	50	40	350*	065B2436	065B2449	065B2459
	80	80	63	350*	065B2437	065B2450	065B2460
	100	125	100	350*	065B2438	065B2451	065B2461
	125	160	125	350*	065B2439	065B2452	065B2462
	150	280	-	300	065B2440	-	065B2463
	200	320	-	300	065B2441	-	065B2464
	250	400	-	300	065B2442	-	065B2465

Максимальная температура теплоносителя для клапанов VFGS 2

	PN	DN 15-125	DN 150-250
Пар, Т _{макс} = 200 °C	16, 25, 40	С охладителем импульса	-
Пар, Т _{макс} = 300 °C	16, 40	-	С охладителем импульса
Пар, Т _{макс} = 300 °C	16	С охладителем импульса и удлинителем штока ZF4	-
Пар, Т _{макс} = 350 °C	25, 40	С охладителем импульса и удлинителем штока ZF4	-


Технические характеристики VFGS 2

Номина	льный диаметр DN, мм		15	20	25	32	40	50	65	80	100	125	150	200	250
Пропус	кная способность k _{vs} , м ³ /ч		4	6.3	8	16	20	32	50	80	125	160	280 320*	320 450*	400 630*
Коэф. н	начала кавитации z по VDM	IA 24 422	0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35	0,3	0,2	0,2
	Макс. перепад давл. на клапане с AFT	PN 16	16	16	16	16	16	16	16	16	15	15			
	$\Delta p_{\text{Makc}}^{**}$, бар	PN 25, 40	20	20	20	20	20	20	20	20	15	15			
	Макс. перепад давл. на клапане с AMV(E) 4	16	16	16	16	16	16	16	16						
	$\Delta p_{\text{Makc}}^{**}$, δap	PN 25, 40	20	20	20	20	20	20	20	20					
	Макс. перепад давл. на клапане с AMV(E) 6	PN 16	16	16	16	16	16	16	16	16	15	15	12	10	10
	$\Delta p_{\text{Makc}}^{**}$, бар	PN 25, 40	20	20	20	20	20	20	20	20	15	15	12	10	10
Номина	льное давление PN, бар		16, 25	5 или 4	0, фла	нцы по	DIN 2	501							
Регулир	уемая среда		Водя	ной пар	р										
Устрой	ство разгрузки давления		Силь	фон из	нерж.	стали	, мат. N	<u>1.457</u>	'1				Гофр.	мембр	ана
		PN 16	Серы	й чугун	⊣ EN-G	JL-250	(GG-2	5)							
Матери	ал корпуса клапана	PN 25	Ковкі	ий чугу	н ЕN-С	JS-40	0 (GGC	3-40.3)							
		Сталі	GP24	0GH (0	GS-C 2	5)									
Материал затвора				Нерж. сталь, мат. № 1.4021 мат. № 1.4313									3		
Матери	ал седла	Нерж. сталь, мат. № 1.4021													
* повыи	ленное значение kvc для клаг	анов прелназнач	енных і	ппа паб	оты с п	пивола	μα ΑΜΥ	613-Y6	n (n82G	0617)					

повышенное значение k_{VS} для клапанов, предназначенных для работы с приводами AMV 613-Y60 (082G0617). выше 14 бар необходимо использовать удлинитель штока ZF4, ZF6 или соединительную деталь KF2.

Устройство VFGS 2

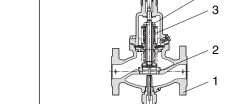
- 1. Корпус клапана
- 2. Седло клапана
- 3. Сильфон
- 4. Золотник
- Крышка

¹⁾ для клапанов с сепаратором для снижения шума

Техническое описание Седельные регулирующие клапаны серии VFG и VFU

Номенклатура и коды для оформления заказа VFU 2

Нормально закрытый Разгруженный по давлению Уплотнение затвора металлическое


Примечание. Соотношение рабочего давления и температуры приведено в DIN 2401

	DN,	k _{vs} ,	t _{makc.} ,	Код №
	ММ	k_{vs} , м ³ /ч	° C	PN 16
	15	4.0	200	065B2738
	20	6.3	200	065B2739
	25	8.0	200	065B2740
	32	16	200	065B2741
	40	20	200	065B2742
	50	32	200	065B2743
" "	65	50	200	065B2744
	80	80	200	065B2745
	100	125	200	065B2746
	125	160	200	065B2747

Технические характеристики VFU 2

жие характеристики тт о	<u> </u>											
ьный диаметр DN, мм		15	20	25	32	40	50	65	80	100	125	
ная способность k _{vs} , м ³ /ч		4	6.3	8	16	20	32	50	80	125	160	
чала кавитации z по VDMA 24	422	0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35	
Макс. перепад давл. на клапане с АFT Δр _{макс} **, бар	PN 16	10							8			
Макс. перепад давл. на клапане с AMV(E) 4 Др макс *, бар	PN 16	10 10							-			
Макс. перепад давл. на клапане с AMV(E) 6 Др макс *, бар	PN 16	10							10		8	
ьное давление PN, бар	-	16, фланцы по DIN 2501										
емая среда/Температура		Подгот	говленн	ая вода	а или 30	% водні	ый раст	вор гли	коля / Т	= 2-200	°C	
гво разгрузки давления		Сильфон из нерж. стали, мат. № 1.4571										
л корпуса клапана	PN 16	Серый	і чугун Е	N-GJL-	250 (GG	i-25)						
л затвора		Нерж.	сталь, г	иат. № 1	1.4404							
Материал седла Нерж. сталь, мат. № 1.4021												
	ная способность k _{vs} , м ³ /ч чала кавитации z по VDMA 24 Макс. перепад давл. на клапане с AFT	ная способность k _{vs} , м ³ /ч чала кавитации z по VDMA 24 422 Макс. перепад давл. на клапане с АFT	ыный диаметр DN, мм 15 ная способность k _{vs} , м³/ч 4 чала кавитации z по VDMA 24 422 0,6 Макс. перепад давл. на клапане с AFT	ыный диаметр DN, мм 15 20 ная способность k _{vs} , м³/ч 4 6.3 чала кавитации z по VDMA 24 422 0,6 0,6 Макс. перепад давл. на клапане с АFT	ыный диаметр DN, мм 15 20 25 ная способность k _{vs} , м³/ч 4 6.3 8 чала кавитации z по VDMA 24 422 0,6 0,6 0,6 Макс. перепад давл. на клапане с AFT	ыный диаметр DN, мм 15	ыный диаметр DN, мм 15 20 25 32 40 ная способность k _{vs} , м³/ч 4 6.3 8 16 20 чала кавитации z по VDMA 24 422 0,6 0,6 0,6 0,6 0,55 0,55 Макс. перепад давл. на клапане с AFT Δр макс **, бар Макс. перепад давл. на клапане с AMV(E) 4 Др макс **, бар Макс. перепад давл. на клапане с AMV(E) 6 Др макс **, бар Макс. перепад давл. на клапане с AMV(E) 6 Др макс **, бар Макс перепад давл. на клапане с AMV(E) 6 Др макс **, бар Макс перепад давл. на клапане с AMV(E) 6 Др макс **, бар Макс перепад давл. на клапане с AMV(E) 6 Др макс **, бар Макс перепад давл. на клапане с AMV(E) 6 Др макс **, бар Макс перепад давл. на клапане с AMV(E) 6 Др макс **, бар Макс перепад давл. на клапане с AMV(E) 6 Др макс **, бар Макс перепад давл. на клапане с AMV(E) 6 Др макс **, бар Макс перепад давл. на клапане с AMV(E) 6 Др макс **, бар Макс перепад давл. на клапана вода или 30% водна вода или 30% вода вода или 30% вода вода вода вода вода вода вода вода	ыный диаметр DN, мм 15 20 25 32 40 50 ная способность k _{vs} , м³/ч 4 6.3 8 16 20 32 чала кавитации z по VDMA 24 422 0,6 0,6 0,6 0,5 0,5 0,5 0,5 Макс. перепад давл. на клапане с АFT Δр макс *, бар Макс. перепад давл. на клапане с AMV(E) 4 Δр макс *, бар РN 16 10 Макс. перепад давл. на клапане с AMV(E) 6 Δр макс *, бар РN 16 10 Нам сперепад давл. на клапане с AMV(E) 6 Δр макс *, бар Но подготовленная вода или 30% водный раст во разгрузки давления Сильфон из нерж. стали, мат. № 1.4571 п корпуса клапана РN 16 Серый чугун EN-GJL-250 (GG-25) п затвора	ыный диаметр DN, мм 15 20 25 32 40 50 65 ная способность k _{vs} , м³/ч 4 6.3 8 16 20 32 50 чала кавитации z по VDMA 24 422 0,6 0,6 0,6 0,5 0,5 0,5 0,5 Макс. перепад давл. на клапане с АFT Др макс , бар Макс. перепад давл. на клапане с AMV(E) 4 PN 16 10 Макс. перепад давл. на клапане с AMV(E) 6 Др макс , бар Ное давление PN, бар РN 16 10 Подготовленная вода или 30% водный раствор гли во разгрузки давления Тор разгрузки давления Сильфон из нерж. стали, мат. № 1.4571 Корпуса клапана PN 16 Серый чугун EN-GJL-250 (GG-25) П затвора Нерж. сталь, мат. № 1.4404	ыный диаметр DN, мм 15 20 25 32 40 50 65 80 ная способность k _{vs} , м³/ч 4 6.3 8 16 20 32 50 80 чала кавитации z по VDMA 24 422 0,6 0,6 0,6 0,6 0,5 0,5 0,5 0,5 0,5 0,5 Макс. перепад давл. на клапане с АБТ ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 4 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане с АМV(E) 6 ДР макс , бар Макс. перепад давл. на клапане в ДВ макс , бар Макс. перепад давл. на клапане в ДВ макс , бар Макс. перепад давл. на клапане в ДВ макс , бар Макс. перепад давл. на клапане в ДВ макс , бар Макс. перепад давл. на клапане в ДВ макс , бар Макс. перепад давл. на клапане в ДВ макс , бар Макс. перепад давл. на в ДВ макс , бар Макс. перепад давл. на в ДВ макс , бар Макс. перепад давл. на в ДВ макс , бар Макс. перепад давл. на в ДВ макс , бар Макс. перепад давл. на в ДВ макс , бар Макс. перепад давл. на в ДВ макс , бар Макс. перепад давл. на в ДВ макс макс , бар Макс. перепад давл. на в ДВ макс макс , бар Макс. перепад давл. на в ДВ макс макс , бар Макс. перепад давл. на в ДВ макс макс , бар Макс. перепад давл. на в ДВ макс макс , бар Макс. перепад давл. на в ДВ макс макс на в ДВ макс макс , бар Макс. перепад давл. на в ДВ макс макс на в ДВ макс макс , бар Макс. перепад давл. на в ДВ макс макс на в ДВ мак	ыный диаметр DN, мм 15 20 25 32 40 50 65 80 100 ная способность k _{vs} , м³/ч 4 6.3 8 16 20 32 50 80 125 чала кавитации z по VDMA 24 422 0,6 0,6 0,6 0,5 0,5 0,5 0,5 0,5 0,4 0,4 Макс. перепад давл. на клапане с АFT ДР макс , бар Макс. перепад давл. на клапане с АMV(E) 4 ДР макс , бар Макс. перепад давл. на клапане с АMV(E) 6 ДР макс , бар Но по	

Устройство VFU 2

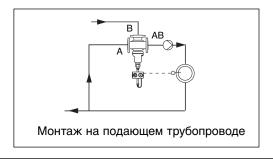
- 1. Корпус клапана
- 2. Седло клапана
- 3. Вкладыш клапана
- 4. Сильфон

Седельные регулирующие клапаны серии VFG и VFU

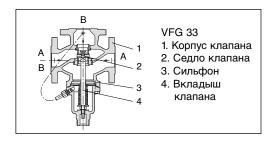
Номенклатура и коды для оформления заказа VFG 33

Трехходовой. Смесительный. Разгруженный по давлению

Примечание. Соотношение рабочего давления и температуры приведено в DIN 2401


DN,	k _{vs} ,	t _{makc.} ,	Ko	ı, Nº
ММ	м3 /ч	° C	PN 16	PN 25
 25	8.0	200	065B2598	065B2606
32	12,5	200	065B2599	065B2607
40	20	200	065B2600	065B2608
50	32	200	065B2601	065B2609
65	50	200	065B2602	065B2610
80	80	200	065B2603	065B2611
100	125	200	065B2604	065B2612
125	160	200	065B2605	065B2613

Технические характеристики VFG 33


Номина	льный диаметр DN, мм	Л	25	32	40	50	65	80	100	125	
Пропуск	Пропускная способность k _{vs} , м ³ /ч			12,5	20	32	50	80	125	160	
	Макс. перепад давл. на клапане VFG 33	PN 16	16	16	16	14	12	10	10	10	
	c AFT Δp _{макс} , бар	PN 25	18	18	16	14	12	10	10 10		
Номина	льное давление PN, ба	ар	16, ил	и 25, фл	анцы по	DIN 25	01				
Регулир	уемая среда/Температ	ура		говленн 200 °C (с			% водны	й раств	ор глико	ля /	
Устройс	ство разгрузки давлен	ия	Сильф	он из н	ерж. ста	ли, мат.	№ 1.457	71			
Матер.	корпуса клапана PN 1	Ковкий чугун EN-GJS-400 (GGG-40.3)									
Материа	Материал затвора Нерж. сталь, мат. № 1.4404										
Материал седла Нерж. сталь, мат. № 1.4021											

^{*} выше 14 бар необходимо использовать удлинитель штока ZF4, ZF6 или соединительную деталь KF 2

Пример применения

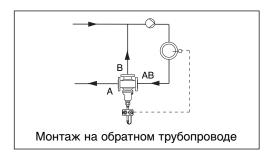
Устройство

Техническое описание Седельные регулирующие клапаны серии VFG и VFU

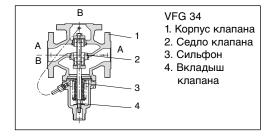
Номенклатура и коды для оформления заказа VFG 34

Трехходовой. Разделительный. Разгруженный по давлению

Примечание. Соотношение рабочего давления и температуры приведено в DIN 2401


	DN,	k_{vs}, м ³ /ч	t _{makc.} , ° C	Код №		
	ММ			PN 16	PN 25	
	25	8.0	200	065B2614	065B2622	
	32	12,5	200	065B2615	065B2623	
	40	20	200	065B2616	065B2624	
	50	32	200	065B2617	065B2625	
	65	50	200	065B2618	065B2626	
	80	80	200	065B2619	065B2627	
	100	125	200	065B2620	065B2628	
	125	160	200	065B2621	065B2629	

Технические характеристики VFG 34

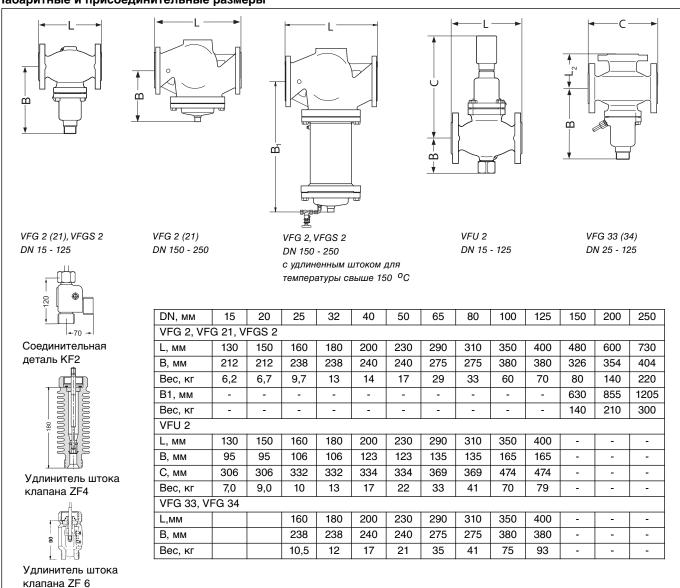

Номинальный диаметр DN, мм			25	32	40	50	65	80	100	125
Пропусн	Пропускная способность k _{vs} , м ³ /ч			12,5	20	32	50	80	125	160
	Макс. перепад давл. на клапане VFG 34 с АFT $\Delta p_{\text{макс}}$, бар	PN 16	16	16	16	14	12	10	10	10
		PN 25	18	18	16	14	12	10	10	10
Номина	Номинальное давление PN, бар		16 или 25, фланцы по DIN 2501							
Регулируемая среда/Температура			Подготовленная вода или 30% водный раствор гликоля / $T = 2-200$ °C (c ZF4 – 350 °C)							
Устройство разгрузки давления			Сильфон из нерж. стали, мат. № 1.4571							
Матер. корпуса клапана PN 16, 25			Ковкий чугун EN-GJS-400 (GGG-40.3)							
Материал затвора			Нерж. сталь, мат. № 1.4404							
Материа	Материал седла			Нерж. сталь, мат. № 1.4021						

^{*} выше 14 бар необходимо использовать удлинитель штока ZF4, ZF6 или соединительную деталь KF2.

Пример применения

Устройство

Седельные регулирующие клапаны серии VFG и VFU


Принадлежности

	Тип	Примечание	Количество	Кодовый №	
	Соединительная деталь KF2	В комбинации с термоэлементами и электроприводами, DN 15 - 125 (для температур до 200°C)	1 шт.	003G1398	
	Удлинитель штока клапана ZF4	Только DN 15 - 125 (для температур свыше 200°C), с тороидальным уплотнением	1 шт.	003G1394	
	Удлинитель штока клапана ZF6	Только DN 15 - 125 (для температур свыше 200°C), с тороидальным уплотнением и с индикатором положения	1 шт.	003G1393	
	Celiapatop liotoka	Для DN 15, 20	1 шт.	065B2775	
		Для DN 25, 32	1 шт.	065B2776	
		Для DN 40, 50	1 шт.	065B2777	
		Для DN 65, 80	1 шт.	065B2778	
	снижения шума)	Для DN 100, 125	1 шт.	065B2779	

Примечание

При давлении свыше 14 бар и в комбинации с термостатами используйте удлинитель штока ZF4, ZF6 или соединительную деталь KF2.

Габаритные и присоединительные размеры

