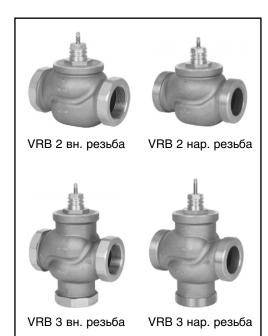


Клапаны с электроприводом – новые версии 2010 года

Оглавление

Седельные регулирующие клапаны VRB 2 - двухходовой регулирующий клапан, резьбовое соединение, VRB 3 - трехходовой регулирующий клапан, резьбовое соединение
Седельные регулирующие клапаны (PN 16) VF 2 - двухходовой регулирующий клапан, фланцевый, VF 3 - трехходовой регулирующий клапан, фланцевый
Седельные регулирующие клапаны (PN 6) VL 2 - двухходовой регулирующий клапан, фланцевый, VL 3 - трехходовой регулирующий клапан, фланцевый
Редукторные электроприводы AMV 435
Редукторные электроприводы АМЕ 435



Седельные регулирующие клапаны

VRB 2 - двухходовой регулирующий клапан, резьбовое соединение

VRB 3 - трехходовой регулирующий клапан, резьбовое соединение

Описание и область применения

Клапаны VRB обеспечивают качественное, экономичное решение для регулирования расхода тепло/холодоносителя в системах отопления и охлаждения.

Клапаны применяются в сочетании с электрическими приводами AMV(E) 335, AMV(E) 435 или AMV(E) 438 SU

Основные данные:

- DN 15-50
- k_{VS} 0,63-40 м³/ч
- PN 16
- Рабочая среда: вода/водо-гликолевая смесь до 50% концентрации
- Температура рабочей среды: 2...130 °C
- Соединение:
- наружная резьба
- внутренняя резьба
- Клапаны отвечают требованиям PED директивы 97/23/EC.

Номенклатура и коды для оформления заказа

Пример:

3-ходовой клапан, DN 15, $k_{\rm VS}$ 1.6, PN 16, $t_{\rm max}$ 130 °C, нар. резьба

- 1 × клапан VRB 3 DN 15 код № **065Z0153**

Дополнительно: - 3 × фитинга код № **065Z0291**

2- и 3-ходовые клапаны VRB (наружная резьба)

k _{VS}	Ko	ц Nº
(м³/ч)	VRB 2	VRB 3
0.63	065Z0171	065Z0151
1.0	065Z0172	065Z0152
1.6	065Z0173	065Z0153
2.5	065Z0174	065Z0154
4.0	065Z0175	065Z0155
6.3	065Z0176	065Z0156
10	065Z0177	065Z0157
16	065Z0178	065Z0158
25	065Z0179	065Z0159
40	065Z0180	065Z0160
	(M³/ч) 0.63 1.0 1.6 2.5 4.0 6.3 10 16 25	(M³/ч) VRB 2 0.63 065Z0171 1.0 065Z0172 1.6 065Z0173 2.5 065Z0174 4.0 065Z0175 6.3 065Z0176 10 065Z0177 16 065Z0178 25 065Z0179

2- и 3-ходовые клапаны VRB (внутренняя резьба)

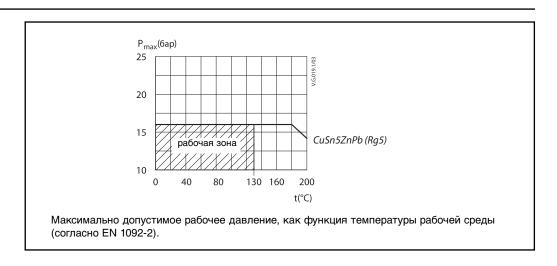
DN	k _{vs}	Ko	ц Nº
DIN	(M³/4)	VRB 2	VRB 3
	0.63	065Z0231	065Z0211
	1.0	065Z0232	065Z0212
15	1.6	065Z0233	065Z0213
	2.5	065Z0234	065Z0214
	4.0	065Z0235	065Z0215
20	6.3	065Z0236	065Z0216
25	10	065Z0237	065Z0217
32	16	065Z0238	065Z0218
40	25	065Z0239	065Z0219
50	40	065Z0240	065Z0220

Аксессуары

·							
Ti	ιп	DN	Код №				
	$R_p^{1/2}$	15	065Z0291				
	R _p ³ / ₄	20	065Z0292				
Фитинги¹)	R _p 1	25	065Z0293				
Фитиппи	R _p 1 ¹ / ₄	32	065Z0294				
	$R_p 1^1/_2$	40	065Z0295				
	R _p 2	50	065Z0296				
Адаптер DN	065Z0311						

¹⁾ Фитинг с вн. резьбой для VRB с нар. резьбой

Тип	Код №	
	DN 15	065Z0321
	DN 20	065Z0322
Корпус сальника	DN 25	065Z0323
корпус сальника	DN 32	065Z0324
	DN 40/50	065Z0325
	DN 65/80	065Z0327

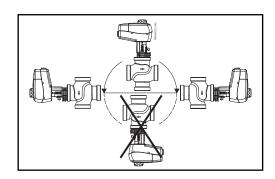


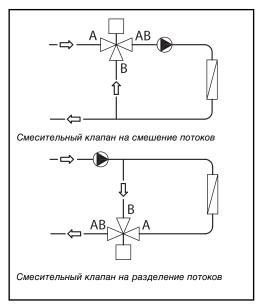
Седельные регулирующие клапаны VRB 2, VRB 3

Технические характеристики

Номинальный диаметр	DN			15			20	25	32	40	50
k _{VS} клапана	м³/ч	0.63	1.0	1.6	2.5	4.0	6.3	10	16	25	40
Ход штока	ММ			•	10					15	
Диапазон регулирования		30:1		50):1				100:1		
Характеристика регулирован	ия			XC	д А-АЕ	В: ЛОГ;	ход В-	АВ: ЛИ	1H		
Коэффициент начала кавита	ции z).4				
Протечка через закрытый кл	эпэц				A - A	$AB \leq 0.0$	05 % o	т k _{VS}			
Протечка через закрытый к	анан		В - AB ≤ 1.0 % от k _{VS}								
Номинальное давление	PN	16									
Макс. перепад давления	бар					4	1				
Рабочая среда		Вода/водо-гликолевая смесь с концентрацией гликоля до 50%									
рН рабочей среды		Мин. 7, макс. 10									
Температура рабочей среды	°C					2	130				
Соединение		Внутренняя и наружная резьба									
Материалы											
Корпус Красная бронза CuSn5ZnPb (RG5)											
Шток Нержаве			жавею	щая ст	галь						
Конус		Латунь									
Сальник		EPDM									

График зависимости рабочего давления от температуры

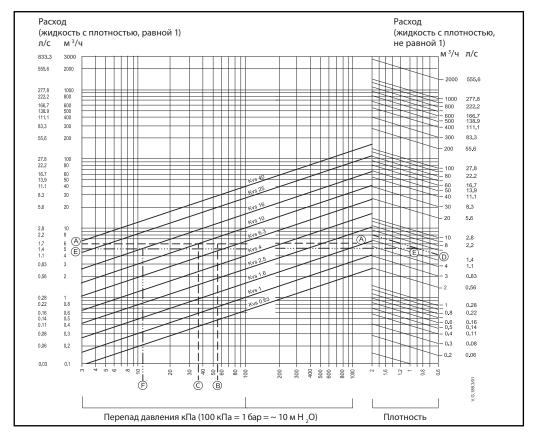

Седельные регулирующие клапаны VRB 2, VRB 3


Монтаж

Направление потока должно соответствовать стрелкам на корпусе клапана. АВ всегда является выходом; входами являются A (двухходовой клапан) или A и B (трехходовой клапан).

Перед монтажом клапана убедитесь, что трубы не содержат металлической стружки или других посторонних предметов. Трубопроводы, на которые устанавливается клапан, должны быть проложены ровно, надежно зафиксированы и защищены от вибрации. Клапан может монтироваться в горизонтальном и вертикальном положении приводом вверх. При монтаже клапана следует предусмотреть достаточное пространство для монтажа/демонтажа привода.

Трехходовой клапан может быть использован только как смесительный. Для смешения потоков клапан устанавливается на подающем трубопроводе, а для разделения - на обратном.



Утилизация

Перед утилизацией клапан должен быть разобран и элементы рассортированы по различным группам материалов.

Выбор типоразмера клапана

Примеры:

1. Для жидкостей с плотностью, равной 1 (напр., вода)

Дано:

Нагрузка на калорифер системы охлаждения:

Q = 42 kBt;

Перепад температур в системе охлаждения:

 $\Delta T = 6 \, ^{\circ}C;$

Перепад давления на клапане:

 $\Delta P_{\kappa \pi}$ = 0,55 бара.

Решение:

Расход энергоносителя через клапан:

$$G = \frac{Q \times 0.86}{\Delta T} = \frac{42 \times 0.86}{6} = 6.02 \text{ m}^3/\text{ч}.$$

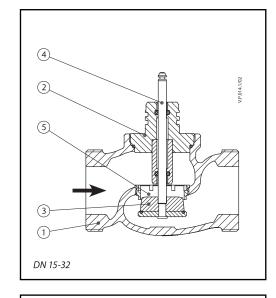
Проводим на диаграмме горизонтальную линию, отображающую требуемый расход – 6,02 м³/ч (линия A-A). Далее проводим вертикальную линию, соответствующую перепаду давления на клапане 0,55 бара (из точки В). Пересечение линии A-A с вертикальной линией из точки В находится между двумя диагональными линиями. Это значит, что нет идеально подходящего типоразмера клапана. В точках пересечения линии A-A с диагональными линиями находим клапан с ближайшим большим k_{VS} . Это клапан с k_{VS} 10, перепад давления на котором будет равен 36 кПа (точка C).

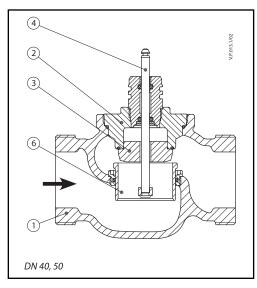
Выбор типоразмера клапана

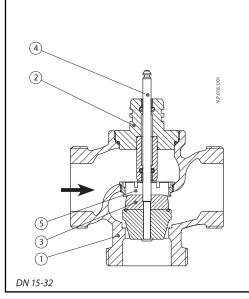
(продолжение)

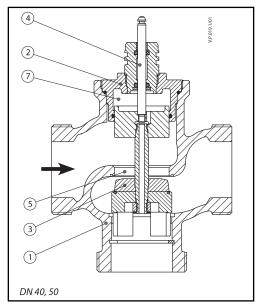
2. Для жидкостей с плотностью, не равной 1

Дано:

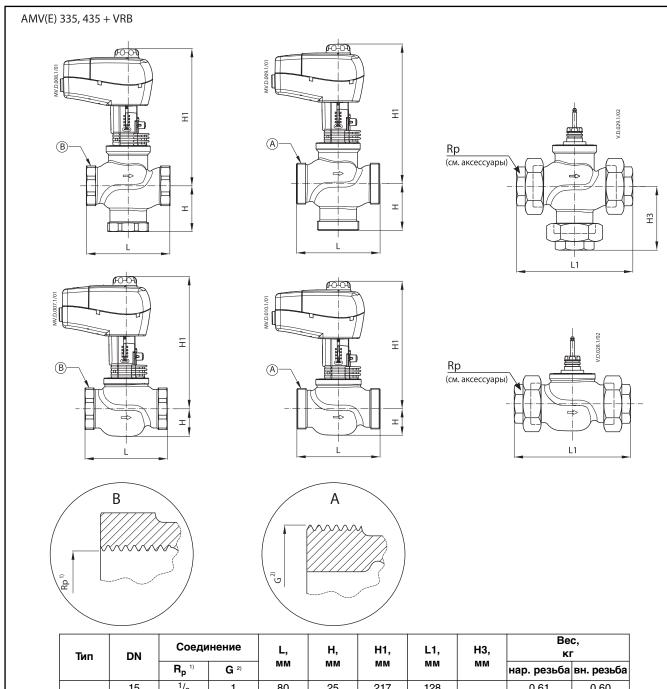

Расход: 6 м³/ч, плотность 0,9. Перепад давления на клапане: $\Delta P_{\text{KЛ}} = 0,1$ бара.


Решение:


Для данного примера подбор клапана начинаем с правой части диаграммы. Находим требуемый расход 6 м³/ч (точка D). Пересечение диагональной линии из точки D с вертикальной линией, соответствующей плотности 0.9, берется за начальную точку линии расхода Е-Е. Дальше подбор продолжается аналогично примеру 1. Вертикаль, соответствующая 10 кПа, пересекает линию Е-Е недалеко от диагонали клапана с k_{VS} 16. Данный клапан создает перепад давления 12.7 кПа (точка F).

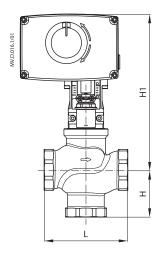

Конструкция

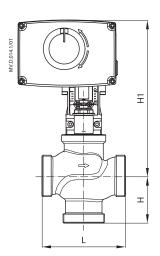
- 1. Корпус клапана
- 2. Вставка клапана
- 3. Конус клапана
- 4. Шток клапана
- 5. Неподвижное седло клапана
- 6. Подвижное седло клапана (разгруженное по давлению)
- 7. Камера разгрузки по давлению

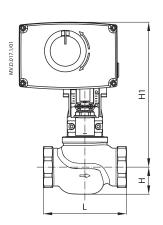


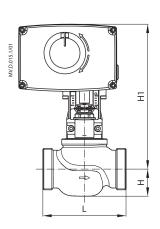
Габаритные и присоединительные размеры

		Сооли	інение					Н3,	Bec,	
Тип	DN	СОЕДИ	пение	L,	Н,	H1,	L1,		KI	-
		R _p 1)	G 2)	G 2) MM MM MM	MM	ММ	ММ	нар. резьба	вн. резьба	
	15	1/2	1	80	25	217	128		0.61	0.60
	20	3/4	11/4	80	29	223	128		0.78	0.77
VRB 2	25	1	11/2	95	29	227	151		1.00	0.98
VND Z	32	11/4	2	112	35	238	178	_	1.57	1.43
	40	11/2	21/4	132	43	252	201		2.62	2.54
	50	2	2 3/4	160	47	261	234		3.76	3.49
	15	1/2	1	80	40	232	128	64	0.70	0.71
	20	3/4	11/4	80	45	239	128	69	0.93	0.91
VRB 3	25	1	11/2	95	50	248	151	78	1.21	1.15
VIIDS	32	1 ¹ / ₄	2	112	58	261	178	91	1.95	1.81
	40	1 ¹ / ₂	21/4	132	75	302	201	110	3.39	3.35
	50	2	2 ³ / ₄	160	83	322	234	120	5.46	5.13


¹⁾ R_p – внутренняя резьба EN 10226-1 ²⁾ G – наружная резьба DIN ISO 228/01




Габаритные и присоединительные размеры (продолжение)


AMV(E) 438 SU + VRB

Техническое описание

Тип	DN	Соеди	нение	L,	Н,	H1,
		R _p 1)	G ²⁾	ММ	ММ	ММ
	15	1/2	1	80	25	237
	20	3/4	11/4	80	29	243
VRB 2	25	1	11/2	95	29	247
VNDZ	32	11/4	2	112	35	258
	40	1 ¹ / ₂	2 ¹ / ₄	132	43	272
	50	2	2 ³ / ₄	160	47	281
	15	1/2	1	80	40	252
	20	3/4	1 ¹ / ₄	80	45	259
VRB 3	25	1	11/2	95	50	268
VNDS	32	11/4	2	112	58	281
	40	11/2	21/4	132	75	322
	50	2	2 3/4	160	83	342

© Данфосс ТОВ 2009

¹⁾ R_p – внутренняя резьба EN 10226-1 ²⁾ G – наружная резьба DIN ISO 228/01

Седельные регулирующие клапаны (PN 16)

VF 2 - двухходовой регулирующий клапан, фланцевый

VF 3 - трехходовой регулирующий клапан, фланцевый

Описание и область применения

Клапаны VF обеспечивают качественное, экономичное решение для регулирования расхода тепло/холодоносителя в системах отопления и охлаждения.

Клапаны применяются в сочетании с электрическими приводами AMV(E) 335, AMV(E) 435 или AMV(E) 438 SU.

Основные данные:

- DN 15-80
- k_{VS} 0,63-100 м³/ч
- PN 16
- Рабочая среда: вода/водо-гликолевая смесь до 50% концентрации
- Температура рабочей среды: 2...130 °C
- Соединение фланцевое
- Клапаны отвечают требованиям PED директивы 97/23/EC.

Номенклатура и коды для оформления заказа

Пример:

2-ходовой клапан, DN 15, k_{VS} 1.6, PN 16, t_{max} 130 °C, фланц.

- 1 × клапан VF 2 DN 15 код № **065Z0273**

2-ходовые клапаны VF 2

DN	к_{vs} (м³/ч)	PN	t _{max.} (°C)	Код №										
	0.63			065Z0271										
	1.0			065Z0272										
15	1.6			065Z0273										
	2.5	16		065Z0274										
	4.0			065Z0275										
20	6.3		16 130	065Z0276										
25	10		10	150	065Z0277									
32	16			065Z0278										
40	25			065Z0279										
50	40													065Z0280
65	63			065Z0281										
80	100			065Z0282										

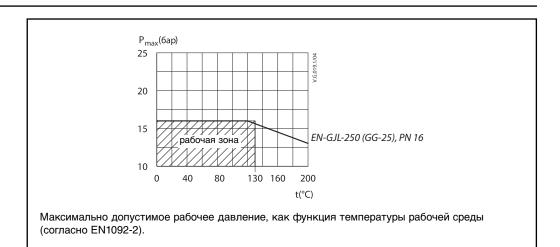
Аксессуары

	Код №	
Адаптер	DN 15-50 / AMV(E)15, 25, 35	065Z0311
	DN 65-80 / AMV(E)15, 25, 35	065Z0312

3-ходовые клапаны VF 3

DN	к_{vs} (м³/ч)	PN	t _{max.} (°C)	Код №
	0.63			065Z0251
	1.0			065Z0252
15	1.6			065Z0253
	2.5	16		065Z0254
	4.0			065Z0255
20	6.3		130	065Z0256
25	10		130	065Z0257
32	16			065Z0258
40	25			065Z0259
50	40			065Z0260
65	63			065Z0261
80	100			065Z0262

Тип	Код №	
	DN 15	065Z0321
	DN 20	065Z0322
Корпус сальника	DN 25	065Z0323
Порттус сальника	DN 32	065Z0324
	DN 40/50	065Z0325
	DN 65/80	065Z0327

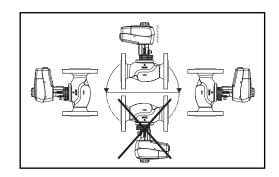


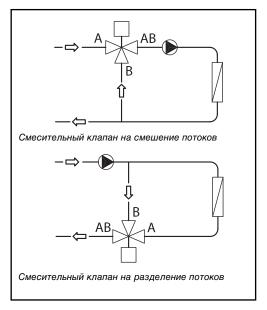
Седельные регулирующие клапаны (PN 16) VF 2, VF 3

Технические характеристики

Номинальный диаметр DN			15					25	32	40	50	65	80
k _{VS} клапана	м³/ч	0.63	1.0	1.6	2.5	4.0	6.3	10	16	25	40	63	100
Ход штока	ММ				10					15		2	0
Диапазон регулирования		30:1		50):1					100:1			
Характеристика регулирован	ния				ход	A-AB:	ЛОГ;	ход Е	8-AB: .	ПИН			
Коэффициент начала кавита	ции z						≥C).4					
Протечка через закрытый кл	200011					A - AE	3 ≤ 0.0	05 % (от k _{VS}				
Протечка через закрытый кл	іанан		B - AB \leq 1.0 % ot k_{VS}										
Номинальное давление	PN		16										
Макс. перепад давления	бар	4 2							.5				
Рабочая среда		Вода/водо-гликолевая смесь с концентрацией гликоля до 50%											
рН рабочей среды		Мин. 7, макс. 10											
Температура рабочей среды	°C	2130											
Соединение		Фланцевое											
Материалы													
Корпус			Серый чугун EN-GJL-250 (GG-25)										
Шток			Нержавеющая сталь										
Конус	Конус			Латунь									
Сальник		EPDM											

График зависимости рабочего давления от температуры

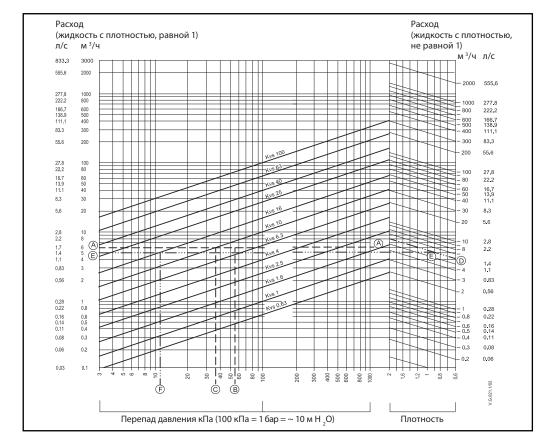

Седельные регулирующие клапаны (PN 16) VF 2, VF 3


Монтаж

Направление потока должно соответствовать стрелкам на корпусе клапана. АВ всегда является выходом; входами являются А (2-ходовой клапан) или А и В (3-ходовой клапан).

Перед монтажом клапана убедитесь, что трубы не содержат металлической стружки или других посторонних предметов. Трубопроводы, на которые устанавливается клапан, должны быть проложены ровно, надежно зафиксированы и защищены от вибрации. Клапан может монтироваться в горизонтальном и вертикальном положении приводом вверх. При монтаже клапана следует предусмотреть достаточное пространство для монтажа/демонтажа привода.

Трехходовой клапан может быть использован только как смесительный. Для смешения потоков клапан устанавливается на подающем трубопроводе, а для разделения – на обратном.



Утилизация

Перед утилизацией клапан должен быть разобран и элементы рассортированы по различным группам материалов.

Выбор типоразмера клапана

Примеры:

1. Для жидкостей с плотностью, равной 1 (напр., вода)

Дано:

Нагрузка на калорифер системы охлаждения:

Q = 42 kBt;

Перепад температур в системе охлаждения:

 $\Delta T = 6 \, ^{\circ}C;$

Перепад давления на клапане:

 $\Delta P_{\kappa\pi} = 0,55$ бара.

Решение:

Расход энергоносителя через клапан:

$$G = \frac{Q \times 0.86}{\Delta T} = \frac{42 \times 0.86}{6} = 6.02 \text{ m}^3/4.$$

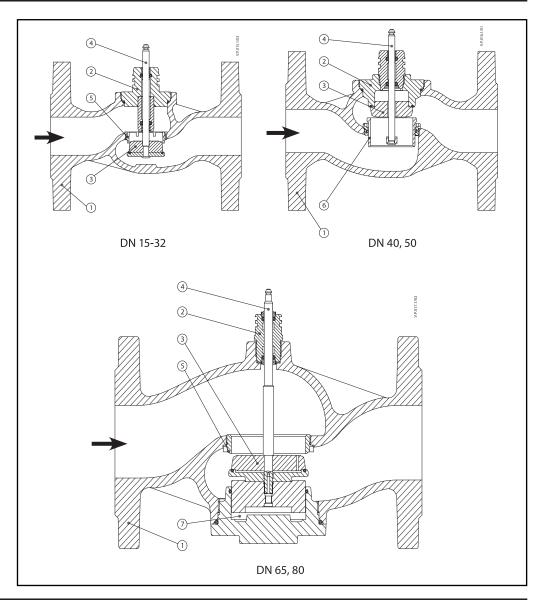
Проводим на диаграмме горизонтальную линию, отображающую требуемый расход – 6,02 м³/ч (линия A-A). Далее проводим вертикальную линию, соответствующую перепаду давления на клапане 0,55 бара (из точки В). Пересечение линии A-A с вертикальной линией из точки В находится между двумя диагональными линиями. Это значит, что нет идеально подходящего типоразмера клапана. В точках пересечения линии A-A с диагональными линиями находим клапан с ближайшим большим k_{VS} . Это клапан с k_{VS} 10, перепад давления на котором будет равен 36 кПа (точка C).

Выбор типоразмера клапана

(продолжение)

2. Для жидкостей с плотностью, не равной 1

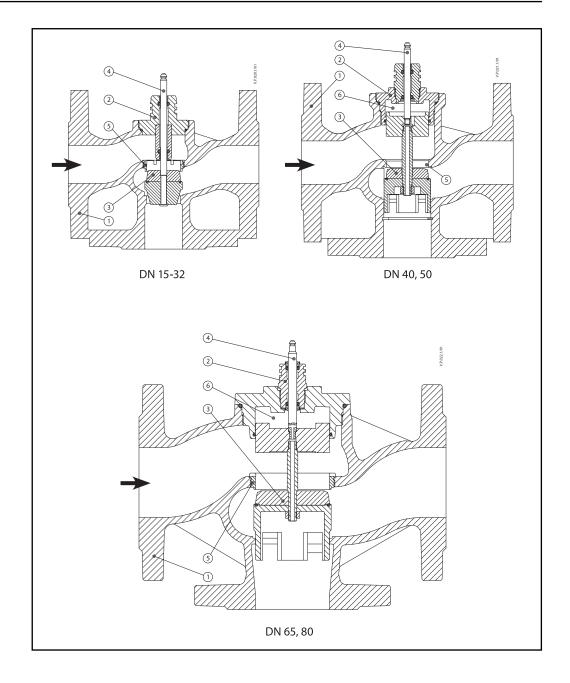
Дано:


Расход: 6 м³/ч, плотность 0,9. Перепад давления на клапане: $\Delta P_{\rm KR} = 0,1$ бара.

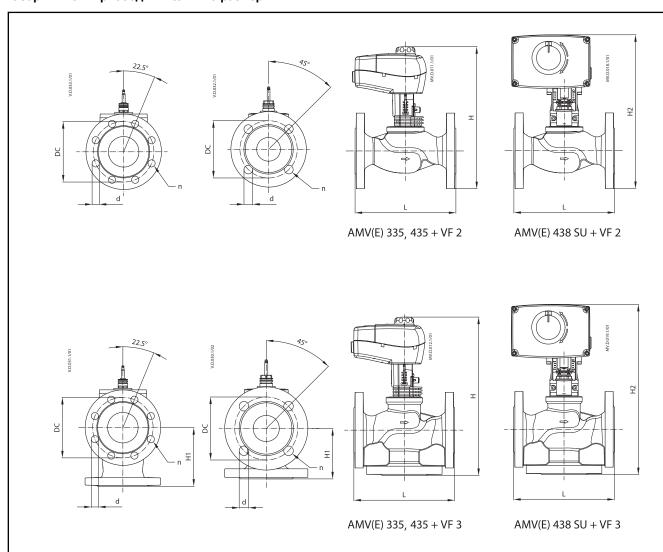
Решение:

Для данного примера подбор клапана начинаем с правой части диаграммы. Находим требуемый расход 6 м³/ч (точка D). Пересечение диагональной линии из точки D с вертикальной линией, соответствующей плотности 0.9, берется за начальную точку линии расхода Е-Е. Дальше подбор продолжается аналогично примеру 1. Вертикаль, соответствующая 10 кПа, пересекает линию Е-Е недалеко от диагонали клапана с k_{VS} 16. Данный клапан создает перепад давления 12.7 кПа (точка F).

Конструкция


- 1. Корпус клапана
- 2. Вставка клапана
- 3. Конус клапана
- 4. Шток клапана
- 5. Неподвижное седло клапана
- 6. Подвижное седло клапана (разгруженное по давлению)
- 7. Камера разгрузки по давлению

Седельные регулирующие клапаны (PN 16) VF 2, VF 3

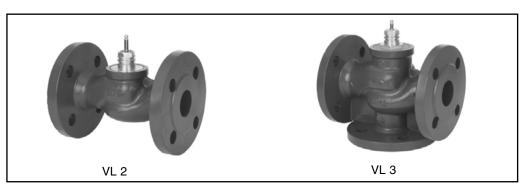

Конструкция (продолжение)

- Корпус клапана
 Вставка клапана
- 3. Конус клапана
- 4. Шток клапана
- 5. Неподвижное седло клапана
- 6. Камера разгрузки по давлению

Габаритные и присоединительные размеры

Техническое описание

Тип	DN	L,	Н,	H1,	H2,	DC,	d,	n,	Bec,
INII	DN	ММ	ММ	ММ	ММ	мм	ММ	ММ	КГ
	15	130	240		260	65	14	4	1.93
	20	150	247	1	267	75	14	4	2.65
	25	160	256	1	276	85	14	4	3.23
VF 2	32	180	273	1	293	100	18	4	4.97
VF Z	40	200	284	1 -	304	110	18	4	6.59
	50	230	297	1	317	125	18	4	8.53
	65	290	342	1	362	145	18	4	15.92
	80	310	353	1	373	160	18	8	18.13
	15	130	255	63	275	65	14	4	2.61
	20	150	264	70	284	75	14	4	3.55
	25	160	273	75	293	85	14	4	4.54
VE 2	32	180	283	80	303	100	18	4	6.90
VF3	40	200	317	90	337	110	18	4	9.05
	50	230	339	100	359	125	18	4	12.79
ļ	65	290	365	120	385	145	18	4	19.18
Ī	80	310	416	155	436	160	18	8	23.73



Седельные регулирующие клапаны (PN 6)

VL 2 - двухходовой регулирующий клапан, фланцевый

VL 3 - трехходовой регулирующий клапан, фланцевый

Описание и область применения

Клапаны VL обеспечивают качественное, экономичное решение для регулирования расхода тепло/холодоносителя в системах отопления и охлаждения.

Клапаны применяются в сочетании с электрическими приводами AMV(E) 335, AMV(E) 435 или AMV(E) 438 SU.

Основные данные:

- DN 15-80
- k_{VS} 0,63-100 м³/ч
- PN 6
- Рабочая среда: вода/водо-гликолевая смесь до 50% концентрации
- Температура рабочей среды: 2...130 °C
- Соединение фланцевое
- Клапаны отвечают требованиям PED директивы 97/23/EC.

Номенклатура и коды для оформления заказа

Пример:

2-ходовой клапан, DN 15, k_{VS} 1.6, PN 6, t_{max} 130 °C, фланц.

- 1 × клапан VL 2 DN 15 код № **065Z0373**

2-ходовые клапаны VL 2

DN	k_{VS} (м³/ч)	PN	t _{max.} (°C)	Код №
	0.63			065Z0371
	1.0			065Z0372
15	1.6			065Z0373
	2.5			065Z0374
	4.0			065Z0375
20	6.3	6	130	065Z0376
25	10		130	065Z0377
32	16			065Z0378
40	25			065Z0379
50	40			065Z0380
65	63			065Z0381
80	100			065Z0382

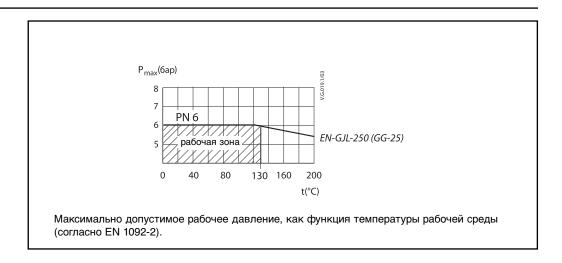
Аксессуары

	Код №	
Адаптер	DN 15-50 / AMV(E)15, 25, 35	065Z0311
	DN 65-80 / AMV(E)15, 25, 35	065Z0312

3-ходовые клапаны VL 3

DN	k_{VS} (м³/ч)	PN	t _{max.} (°C)	Код №
	0.63			065Z0351
	1.0			065Z0352
15	1.6			065Z0353
	2.5			065Z0354
	4.0			065Z0355
20	6.3	6	130	065Z0356
25	10		130	065Z0357
32	16			065Z0358
40	25			065Z0359
50	40			065Z0360
65	63			065Z0361
80	100			065Z0362

Тип	Код №	
	DN 15	065Z0321
	DN 20	065Z0322
Корпус сальника	DN 25	065Z0323
Порттус сальника	DN 32	065Z0324
	DN 40/50	065Z0325
	DN 65/80	065Z0327

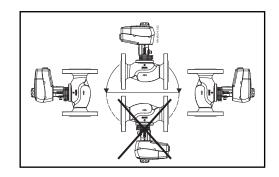


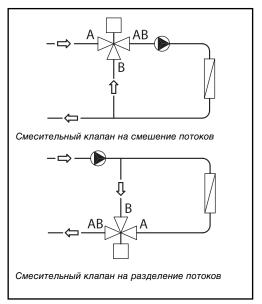
Седельные регулирующие клапаны (PN 6) VL 2, VL 3

Технические характеристики

Номинальный диаметр DN			15					25	32	40	50	65	80
k _{VS} клапана	м³/ч	0.63	0.63 1.0 1.6 2.5 4.0				6.3	10	16	25	40	63	100
Ход штока	ММ				10					15		2	0
Диапазон регулирования		30:1		50	D:1				•	100:1			
Характеристика регулирован	ния				ход	A-AB:	ЛОГ;	ход Е	3-AB: .	ЛИН			
Коэффициент начала кавита	ции z).4					
Протечка через закрытый кл	100011					A - AE	3 ≤ 0.0)5 % (от k _{VS}	;			
Протечка через закрытый к	іапан					B - A	B ≤ 1.	0 % o	т k _{VS}				
Номинальное давление	PN		6										
Макс. перепад давления	бар	4							2	.5			
Рабочая среда		Вода/водо-гликолевая смесь с концентрацией гликоля до 50%											
рН рабочей среды		Мин. 7, макс. 10											
Температура рабочей среды	°C	2130											
Соединение		Фланцевое											
Материалы													
Корпус			Серый чугун EN-GJL-250 (GG-25)										
Шток			Нержавеющая сталь										
Конус	Конус			Латунь									
Сальник			EPDM										

График зависимости рабочего давления от температуры

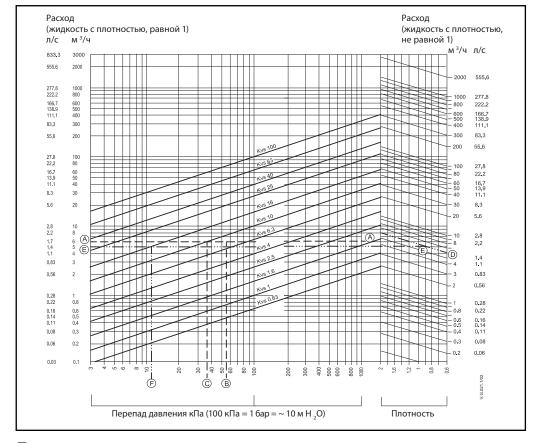

Седельные регулирующие клапаны (PN 6) VL 2, VL 3


Монтаж

Направление потока должно соответствовать стрелкам на корпусе клапана. АВ всегда является выходом; входами являются A (двухходовой клапан) или A и B (трехходовой клапан).

Перед монтажом клапана убедитесь, что трубы не содержат металлической стружки или других посторонних предметов. Трубопроводы, на которые устанавливается клапан, должны быть проложены ровно, надежно зафиксированы и защищены от вибрации. Клапан может монтироваться в горизонтальном и вертикальном положении приводом вверх. При монтаже клапана следует предусмотреть достаточное пространство для монтажа/демонтажа привода.

Трехходовой клапан может быть использован только как смесительный. Для смешения потоков клапан устанавливается на подающем трубопроводе, а для разделения - на обратном.



Утилизация

Перед утилизацией клапан должен быть разобран и элементы рассортированы по различным группам материалов.

Выбор типоразмера клапана

Примеры:

1. Для жидкостей с плотностью, равной 1 (напр., вода)

Дано:

Нагрузка на калорифер системы охлаждения:

Q = 42 kBt;

Перепад температур в системе охлаждения:

 $\Delta T = 6 \, ^{\circ}C;$

Перепад давления на клапане:

 $\Delta P_{K\Pi}$ = 0,55 бара.

Решение:

Расход энергоносителя через клапан:

$$G = \frac{Q \times 0.86}{\Delta T} = \frac{42 \times 0.86}{6} = 6.02 \text{ m}^3/\text{y}$$

Проводим на диаграмме горизонтальную линию, отображающую требуемый расход – 6,02 м³/ч (линия A-A). Далее проводим вертикальную линию, соответствующую перепаду давления на клапане 0,55 бара (из точки В). Пересечение линии A-A с вертикальной линией из точки В находится между двумя диагональными линиями. Это значит, что нет идеально подходящего типоразмера клапана. В точках пересечения линии A-A с диагональными линиями находим клапан с ближайшим большим k_{VS} . Это клапан с k_{VS} 10, перепад давления на котором будет равен 36 кПа (точка C).

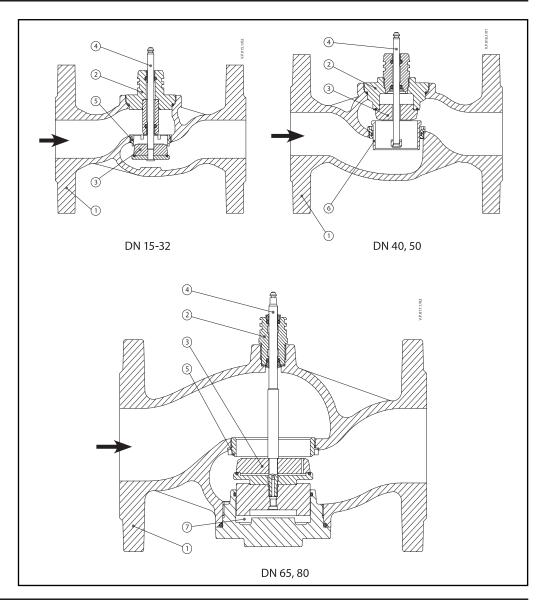
Выбор типоразмера клапана

(продолжение)

2. Для жидкостей с плотностью, не равной 1

Седельные регулирующие клапаны (PN 6) VL 2, VL 3

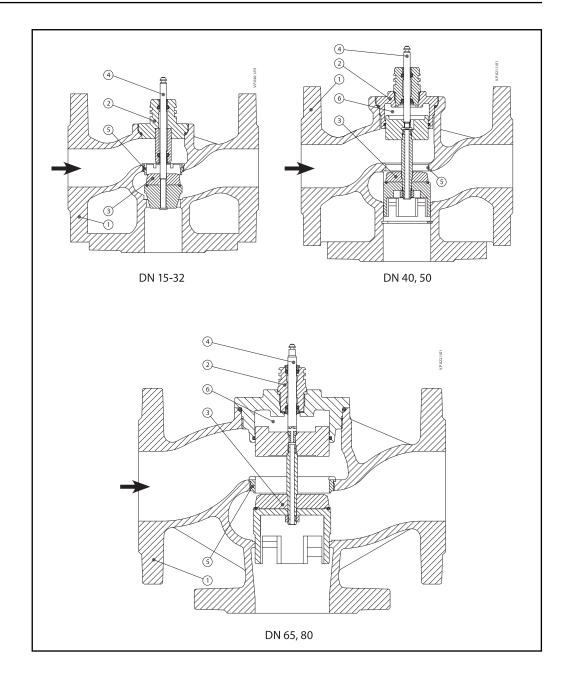
Дано:


Расход: 6 м³/ч, плотность 0,9. Перепад давления на клапане: $\Delta P_{KJ} = 0,1 \text{ fapa.}$

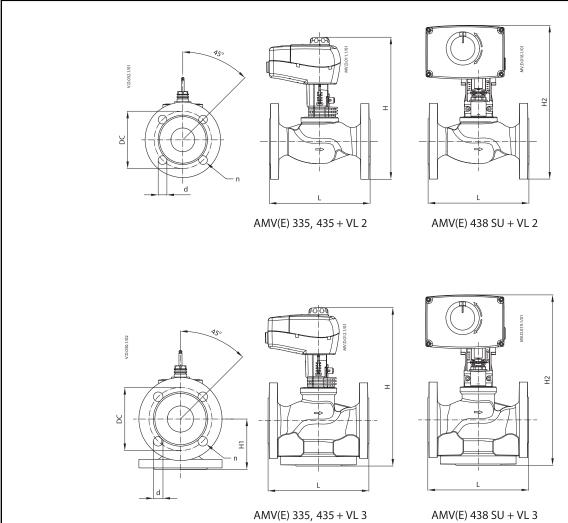
Решение:

Для данного примера подбор клапана начинаем с правой части диаграммы. Находим требуемый расход 6 м³/ч (точка D). Пересечение диагональной линии из точки D с вертикальной линией, соответствующей плотности 0.9, берется за начальную точку линии расхода Е-Е. Дальше подбор продолжается аналогично примеру 1. Вертикаль, соответствующая 10 кПа, пересекает линию Е-Е недалеко от диагонали клапана с k_{VS} 16. Данный клапан создает перепад давления 12.7 кПа (точка F).

Конструкция


- 1. Корпус клапана
- 2. Вставка клапана
- 3. Конус клапана
- 4. Шток клапана
- 5. Неподвижное седло клапана
- 6. Подвижное седло клапана (разгруженное по давлению)
- 7. Камера разгрузки по давлению

Седельные регулирующие клапаны (PN 6) VL 2, VL 3


Конструкция (продолжение)

- Корпус клапана
 Вставка клапана
- 3. Конус клапана
- 4. Шток клапана
- 5. Неподвижное седло клапана
- 6. Камера разгрузки по давлению

Габаритные и присоединительные размеры

Техническое описание

Тип	DN	L,	Н,	H1,	H2,	DC,	d,	n,	Bec,
IMII	DN	ММ	ММ	ММ	ММ	ММ	ММ	ММ	КГ
	15	130	233		253	55	11	4	1.48
	20	150	240	1	260	65	11	4	2.07
	25	160	249	1	269	75	11	4	2.59
VL 2	32	180	263	1	283	90	14	4	3.82
VL Z	40	200	274	-	294	100	14	4	5.28
	50	230	285	1	305	110	14	4	6.74
	65	290	330	1	350	130	14	4	13.90
	80	310	348	1	368	150	19	4	17.22
	15	130	255	63	275	55	11	4	1.93
	20	150	264	70	284	65	11	4	2.68
	25	160	273	75	293	75	11	4	3.59
VL 3	32	180	283	80	303	90	14	4	5.17
VL 3	40	200	317	90	337	100	14	4	7.08
	50	230	339	100	359	110	14	4	10.11
	65	290	365	120	385	130	14	4	16.15
	80	310	416	155	436	150	19	4	22.36

Редукторные электроприводы AMV 435

Описание и область применения

Приводы AMV 435 используются с клапанами VRB, VRG, VF и VL диаметром до DN 80.

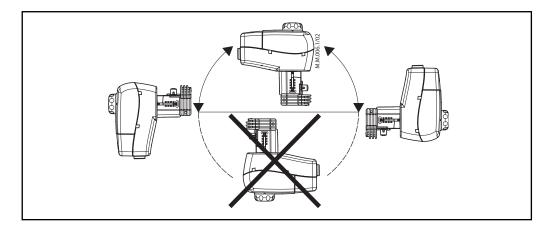
Основные данные:

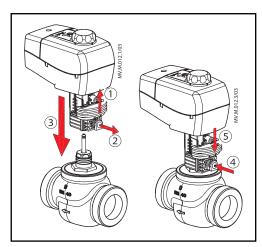
- Напряжение питания:
 - 24 В переменного или постоянного тока
 - 230 В переменного тока
- 3-точечное управление
- Моментные муфты защищают привод и клапан от перегрузки
- Усилие закрытия: 400 Н
- Ход штока: 20 мм
- Скорость (регулируемая):
 - 7,5 сек./мм
 - 15 сек./мм
- Макс. температура рабочей среды: 130 °C
- Наружный индикатор рабочего состояния
- Возможность ручного управления.

Номенклатура и коды для оформления заказа

Тип	Напряжение питания	№ кода
AMV 435	≃ 24 B	082H0162
AIVIV 400	~ 230 B	082H0163

Аксессуары

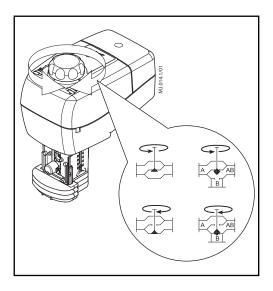

Тип	№ кода
Адаптер для старых клапанов VRB, VRG, VF, VL	065Z0313


Технические характеристики

Электропитание	≃ 24 B, ~230 B; +10 % - 15 %
Потребляемая мощность	2 BA
Частота	50/60 Гц (для переменного тока)
Управляющий сигнал	3-точечный
Развиваемое усилие	400 H
Ход штока	20 мм
Скорость	7,5 сек./мм или 15 сек./мм
Макс. температура рабочей среды	130 °C
Температура окружающей среды	055 °C
Температура хранения и перевозки	-40+70 °C
Класс защиты	IP 54
Bec	0,45 кг
С€ - маркировка согласно со стандартами	Директива по низкому напряжению 2006/95/EC: EN 60730-1, EN 60730-2-14 EMC - Директива 2004/108/EC: EN 60730-1, EN 60730-2-14

Редукторные электроприводы AMV 435

Монтаж


Механический

Привод устанавливается горизонтально или вертикально вверх. Монтаж электропривода на корпус клапана не требует применения каких-либо инструментов. Рекомендуется предусмотреть достаточное для обслуживания пространство вокруг привода.

Электрический

Доступ к электрическим соединениям обеспечивается после снятия крышки. Предусмотрены два кабельных ввода М16 х 1,5. Оба ввода содержат резиновые заглушки. Следует помнить, что для сохранения класса IP необходимо применить соответствующие кабельные сальники.

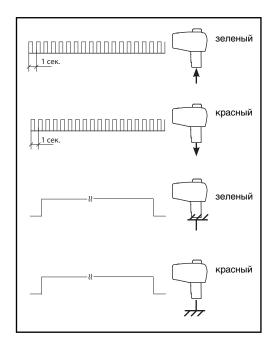
Ручное управление

Ручное управление осуществляется поворотом ручки до желаемого положения. Соблюдайте направление, указанное символом вращения.

Порядок операций:

- Отключите управляющий сигнал
- Поворотом ручки установите клапан в желаемое положение
- Возобновите подачу управляющего сигнала.

Пуск в эксплуатацию


Для пуска устройства в эксплуатацию необходимо завершить механический и электрический монтаж и провести необходимые проверки и испытания:

- Подать электропитание
- Подать соответствующий управляющий сигнал и проверить правильность направления движения штока клапана.

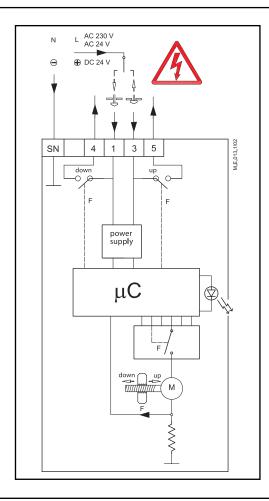
Теперь устройство полностью готово к эксплуатации.

Редукторные электроприводы AMV 435

Светодиодный индикатор

Мигающий зеленый индикатор: шток привода втягивается.

Горящий зеленый индикатор: крайнее верхнее положение достигнуто.


Мигающий красный индикатор: шток привода выдвигается.

Горящий красный индикатор: крайнее нижнее положение достигнуто.

Схема электрических соединений

Не прикасайтесь к элементам на печатной плате! Не снимайте крышку до полного отключения питания. Макс. допустимая мощность нагрузки, подключаемой к клеммам 4 и 5, составляет 7 ВА.

Клеммы 1, 3:

Вход управляющего напряжения с контроллера.

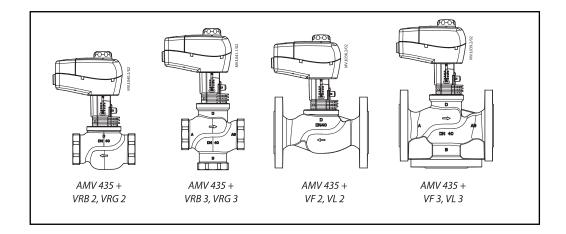
Питание \simeq 24 B, \sim 230 B (зависит от типа привода).

Клеммы 4, 5:

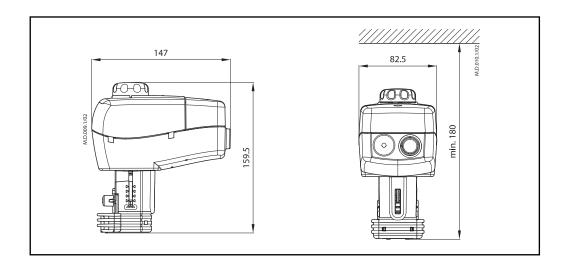
Выход для индикации конечного положения.

Клемма N

Нейтральная/Общая (0 В).


Утилизация

Перед утилизацией привод следует разобрать и рассортировать компоненты по различным группам материалов.



Редукторные электроприводы AMV 435

Комбинации электроприводов и регулирующих клапанов

Габаритные размеры

Редукторные электроприводы АМЕ 435

Описание и область применения

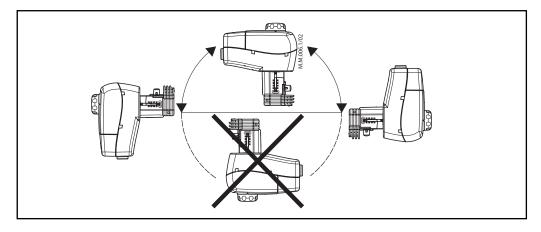
Приводы AME 435 используются с клапанами VRB, VRG, VF и VL диаметром до DN 80.

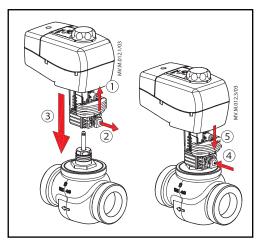
Основные данные:

- Напряжение питания:
 - 24 В переменного или постоянного тока
- Аналоговое управление:
 - 0(4)...20 мA
 - 0(2)...10 B
- Моментные муфты защищают привод и клапан от перегрузки
- Усилие закрытия: 400 Н
- Ход штока: 20 мм
- Скорость (регулируемая):
 - 7,5 сек./мм
 - 15 сек./мм
- Макс. температура рабочей среды: 130 °C
- Наружный индикатор рабочего состояния
- Наружная кнопка "СБРОС/РЕЖИМ ОЖИДАНИЯ"
- Возможность ручного управления.

Номенклатура и коды для оформления заказа

Тип	Напряжение питания	№ кода
AME 435	≃ 24 B	082H0161


Аксессуары


Тип	№ кода
Адаптер для старых клапанов	065Z0313
VRB, VRG, VF, VL	000200.0

Технические характеристики

Электропитание	≃24 B; ±10%	
Потребляемая мощность	4,5 BA	
Частота	50/60 Гц (для переменного тока)	
Входной управляющий сигнал Ү	010 B (210 B) Ri = 95 kΩ 020 мA (420 мA) Ri = 500 Ω	
Выходной сигнал Х	010 B (210 B) RL = 650 Ω (максимальная нагрузка)	
Развиваемое усилие	400 H	
Ход штока	20 мм	
Скорость	7,5 сек./мм или 15 сек./мм	
Макс. температура рабочей среды	130 °C	
Температура окружающей среды	055 °C	
Температура хранения и перевозки	-40+70 °C	
Класс защиты	IP 54	
Bec	0,45 кг	
С€ - маркировка согласно со стандартами	Директива по низкому напряжению 2006/95/EC: EN 60730-1, EN 60730-2-14 EMC - Директива 2004/108/EC: EN 60730-1, EN 60730-2-14	

Монтаж

Механический

Привод устанавливается горизонтально или вертикально вверх. Монтаж электропривода на корпус клапана не требует применения каких-либо инструментов. Рекомендуется предусмотреть достаточное для обслуживания пространство вокруг привода.

Электрический

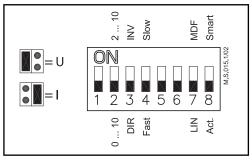
Доступ к электрическим соединениям обеспечивается после снятия крышки. Предусмотрены два кабельных ввода М16 х 1,5. Оба ввода содержат резиновые заглушки. Следует помнить, что для сохранения класса IP необходимо применить соответствующие кабельные сальники.

Установка микропереключателей DIP

Перемычка

• U/I - Переключатель типа входного сигнала

В положении U выбран входной сигнал по напряжению. В положении I выбран входной сигнал по току.


- SW 1: Не задействован
- SW 2: Переключатель диапазона входного сигнала

В положении ОFF входной сигнал в диапазоне от 0 до 10 В (если выбран сигнал по напряжению) или от 0 до 20 мА (если выбран сигнал по току). В положении ОN входной сигнал в диапазоне от 2 до 10 В (если выбран сигнал по напряжению) или от 4 до 20 мА (если выбран сигнал по току).

SW 3: Переключатель прямого или обратного действия

В положении OFF привод выполняет прямое действие (шток выдвигается при повышении напряжения). В положении ON привод выполняет обратное действие (шток втягивается при повышении напряжения).

SW 4: Переключатель скорости
В положении ОFF скорость перемещения штока 7,5 сек./мм. В положении ON
скорость перемещения штока 15 сек./мм.

- SW 5: Не задействован
- SW 6: Не задействован
- SW 7: Переключатель логарифмического или линейного закона регулирования

В положении OFF расход через клапан изменяется по линейной зависимости от уровня управляющего сигнала. В положении ON расход через клапан изменяется в равном процентном отношении.

SW 8: Переключатель интеллектуальной функции

В положении ON запускается специальный алгоритм устранения автоколебаний управляющего сигнала. В положении OFF функция устранения автоколебаний отключена.

Мигающий красный индикатор: режим ожидания (интервал 2 сек.)	
Мигающий зеленый индикатор: достигнуто исходное положение (интервал 6 сек.)	6 сек.
Мигающий зеленый индикатор: автоматическая настройка хода штока (интервал 1 сек.)	1 сек.

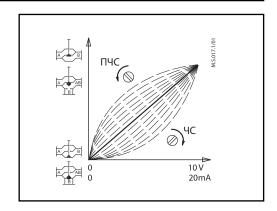
СБРОС

Удерживание нажатой кнопки "СБРОС/РЕЖИМ ОЖИДАНИЯ" на протяжении 5 секунд переводит привод в режим цикла автоматической настройки хода штока.

Двухцветный светодиод мигает зеленым цветом с интервалом в 1 секунду во время процедуры калибровки, которая начинается с выдвижения штока. При достижении максимального усилия электропривод начинает втягивать шток до повторного достижения максимального усилия. После этого электропривод вводит нормальный режим работы и начинает реагировать на управляющий сигнал.

Двухцветный светодиод мигает зеленым цветом на протяжении всего периода настройки. При завершении процедуры настройки двухцветный светодиод мигает зеленым цветом с интервалом 6 секунд.

РЕЖИМ ОЖИДАНИЯ

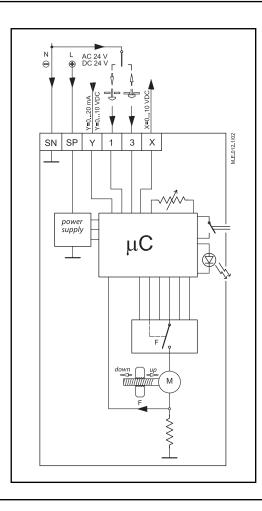

Нажатие кнопки "СБРОС/РЕЖИМ ОЖИДАНИЯ" переводит электропривод в режим ожидания. В этом режиме привод сохраняет последнее положение штока и не принимает управляющий сигнал. Такой режим работы используется для ручного управления приводом при пусконаладке другого оборудования или для сервисного обслуживания.

Светодиодный индикатор

Светодиодный индикатор расположен на крышке привода и отображает его режим работы.

Электронное регулирование расходной характеристики клапана

В электроприводе предусмотрена возможность изменения расходной характеристики клапана с линейной на логарифмическую путем вращения потенциометра.


Утилизация

Перед утилизацией привод следует разобрать и рассортировать компоненты по различным группам материалов.

Редукторные электроприводы АМЕ 435

Схема электрических соединений

Функция автоматической настройки хода штока

При первой подаче электропитания привод автоматически настраивается на длину хода штока клапана. В дальнейшем функция автоматической настройки хода штока может быть повторно инициирована нажатием кнопки "СБРОС/РЕЖИМ ОЖИДАНИЯ".

Длина электрокабеля	Рекомендуемое сечение проводов	
0-50 м	0,75 мм²	
>50 м	1,5 mm ²	

SP ≃24 В Электропитание

SN 0 В Общий

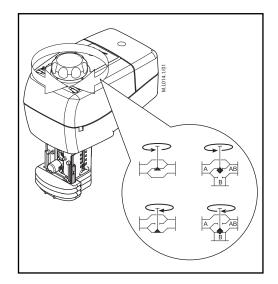
Y 0-10 В Входной сигнал (2-10 В)

0-20 мА (4-20 мА)

X 0-10 В Выходной сигнал

(2-10 B)

Пуск в эксплуатацию


Для пуска устройства в эксплуатацию необходимо завершить механический и электрический монтаж и провести необходимые проверки и испытания:

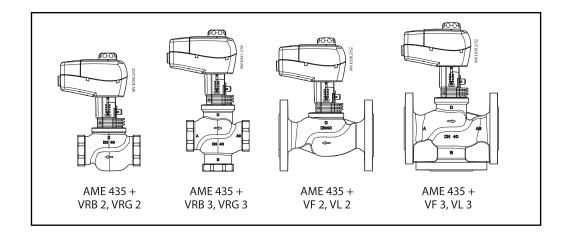
- Подать электропитание. Привод начнет автоматическую настройку хода штока.
- Подать соответствующий управляющий сигнал и проверить правильность направления движения штока клапана.
- Подав граничные значения управляющего сигнала, убедиться, что привод обеспечивает перемещение штока клапана на полную величину хода.

Теперь устройство полностью готово к эксплуатации.

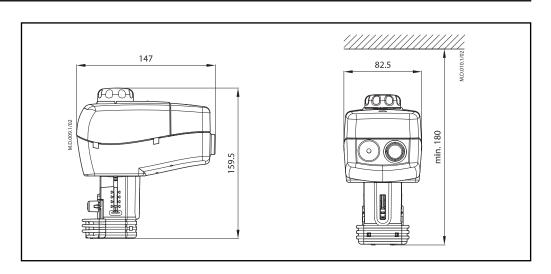
Ручное управление

Техническое описание

Ручное управление осуществляется поворотом ручки до желаемого положения. Соблюдайте направление, указанное символом вращения. Если производилось ручное управление, то сигналы X и Y неправильны до тех пор, пока привод не достигнет конечного положения.


Функция РЕЖИМА ОЖИДАНИЯ

Привод АМЕ 435 имеет наружную кнопку "РЕЖИМ ОЖИДАНИЯ", нажатием на которую отключается прием управляющего сигнала, и шток фиксируется в текущем положении.


Порядок операций:

- Нажмите кнопку "РЕЖИМ ОЖИДАНИЯ" или отключите питание
- Поворотом ручки установите клапан в желаемое положение
- Повторно нажмите кнопку "РЕЖИМ ОЖИДАНИЯ" или возобновите подачу питания.

Комбинации электроприводов и регулирующих клапанов

Габаритные размеры

